13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ocean acidification elicits different energetic responses in an Arctic and a boreal population of the copepod Pseudocalanus acuspes

      ,
      Marine Biology
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms.

          Ocean acidification is a pervasive stressor that could affect many marine organisms and cause profound ecological shifts. A variety of biological responses to ocean acidification have been measured across a range of taxa, but this information exists as case studies and has not been synthesized into meaningful comparisons amongst response variables and functional groups. We used meta-analytic techniques to explore the biological responses to ocean acidification, and found negative effects on survival, calcification, growth and reproduction. However, there was significant variation in the sensitivity of marine organisms. Calcifying organisms generally exhibited larger negative responses than non-calcifying organisms across numerous response variables, with the exception of crustaceans, which calcify but were not negatively affected. Calcification responses varied significantly amongst organisms using different mineral forms of calcium carbonate. Organisms using one of the more soluble forms of calcium carbonate (high-magnesium calcite) can be more resilient to ocean acidification than less soluble forms (calcite and aragonite). Additionally, there was variation in the sensitivities of different developmental stages, but this variation was dependent on the taxonomic group. Our analyses suggest that the biological effects of ocean acidification are generally large and negative, but the variation in sensitivity amongst organisms has important implications for ecosystem responses. © 2010 Blackwell Publishing Ltd/CNRS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plankton effect on cod recruitment in the North Sea.

            The Atlantic cod (Gadus morhua L.) has been overexploited in the North Sea since the late 1960s and great concern has been expressed about the decline in cod biomass and recruitment. Here we show that, in addition to the effects of overfishing, fluctuations in plankton have resulted in long-term changes in cod recruitment in the North Sea (bottom-up control). Survival of larval cod is shown to depend on three key biological parameters of their prey: the mean size of prey, seasonal timing and abundance. We suggest a mechanism, involving the match/mismatch hypothesis, by which variability in temperature affects larval cod survival and conclude that rising temperature since the mid-1980s has modified the plankton ecosystem in a way that reduces the survival of young cod.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Local adaptation in marine invertebrates.

              Local adaptation in the sea was regarded historically as a rare phenomenon that was limited to a handful of species with exceptionally low dispersal potential. However, a growing body of experimental studies indicates that adaptive differentiation occurs in numerous marine invertebrates in response to selection imposed by strong gradients (and more complex mosaics) of abiotic and biotic conditions. Moreover, a surprisingly high proportion of the marine invertebrates known or suspected of exhibiting local adaptation are species with planktonic dispersal. Adaptive divergence among populations can occur over a range of spatial scales, including those that are fine-grained (i.e., meters to kilometers), reflecting a balance between scales of gene flow and selection. Addressing the causes and consequences of adaptive genetic differentiation among invertebrate populations promises to advance community ecology, climate change research, and the effective management of marine ecosystems.
                Bookmark

                Author and article information

                Journal
                Marine Biology
                Mar Biol
                Springer Nature
                0025-3162
                1432-1793
                April 2015
                February 2015
                : 162
                : 4
                : 799-807
                Article
                10.1007/s00227-015-2625-9
                a8df5e7f-c141-40d7-b106-0e6c1488c02a
                © 2015
                History

                Comments

                Comment on this article