18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Pain and immunity: implications for host defence

      , ,
      Nature Reviews Immunology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pain is a hallmark of tissue injury, inflammatory diseases, pathogen invasion and neuropathy. It is mediated by nociceptor sensory neurons that innervate the skin, joints, bones, muscles and mucosal tissues and protects organisms from noxious stimuli. Nociceptors are sensitized by inflammatory mediators produced by the immune system, including cytokines, lipid mediators and growth factors, and can also directly detect pathogens and their secreted products to produce pain during infection. Upon activation, nociceptors release neuropeptides from their terminals that potently shape the function of innate and adaptive immune cells. For some pathogens, neuron–immune interactions enhance host protection from infection, but for other pathogens neuron–immune signalling pathways can be exploited to facilitate pathogen survival. Here, we discuss the role of nociceptor interactions with the immune system in pain and infection and how understanding these pathways could produce new approaches to treat infectious diseases and chronic pain.

          Related collections

          Most cited references119

          • Record: found
          • Abstract: not found
          • Article: not found

          Different immune cells mediate mechanical pain hypersensitivity in male and female mice.

          A large and rapidly increasing body of evidence indicates that microglia-to-neuron signaling is essential for chronic pain hypersensitivity. Using multiple approaches, we found that microglia are not required for mechanical pain hypersensitivity in female mice; female mice achieved similar levels of pain hypersensitivity using adaptive immune cells, likely T lymphocytes. This sexual dimorphism suggests that male mice cannot be used as proxies for females in pain research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Type 2 innate lymphoid cells control eosinophil homeostasis

            Eosinophils are specialized myeloid cells associated with allergy and helminth infections. Blood eosinophils demonstrate circadian cycling, as described over 80 years ago, 1 and are abundant in the healthy gastrointestinal tract. Although a cytokine, interleukin (IL)-5, and chemokines such as eotaxins, mediate eosinophil development and survival, 2 and tissue recruitment, 3 respectively, the processes underlying the basal regulation of these signals remain unknown. Here, we show that serum IL-5 is maintained by long-lived type 2 innate lymphoid cells (ILC2) resident in peripheral tissues. ILC2 secrete IL-5 constitutively and are induced to co-express IL-13 during type 2 inflammation, resulting in localized eotaxin production and eosinophil accumulation. In the small intestine where eosinophils and eotaxin are constitutive, 4 ILC2 co-express IL-5 and IL-13, which is enhanced after caloric intake. The circadian synchronizer vasoactive intestinal peptide (VIP) also stimulates ILC2 through the VPAC2 receptor to release IL-5, linking eosinophil levels with metabolic cycling. Tissue ILC2 regulate basal eosinophilopoiesis and tissue eosinophil accumulation through constitutive and stimulated cytokine expression, and this dissociated regulation can be tuned by nutrient intake and central circadian rhythms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of a mast cell specific receptor crucial for pseudo-allergic drug reactions

              Mast cells are primary effectors in allergic reactions, and may have significant roles in diseases by secreting histamine and various inflammatory and immunomodulatory substances 1,2 . While classically they are activated by IgE antibodies, a unique property of mast cells is their antibody-independent responsiveness to a range of cationic substances, collectively called basic secretagogues, including inflammatory peptides and drugs associated with allergic-type reactions 1,3 . Roles for these substances in pathology have prompted a decades-long search for their receptor(s). Here we report that basic secretagogues activate mouse mast cells in vitro and in vivo through a single receptor, MrgprB2, the orthologue of the human G-protein coupled receptor (GPCR) MrgprX2. Secretagogue-induced histamine release, inflammation, and airway contraction are abolished in MrgprB2 null mutant mice. Further, we show that most classes of FDA-approved peptidergic drugs associated with allergic-type injection-site reactions also activate MrgprB2 and MrgprX2, and that injection-site inflammation is absent in mutant mice. Finally, we determine that MrgprB2 and MrgprX2 are targets of many small molecule drugs associated with systemic pseudo-allergic, or anaphylactoid, reactions; we show that drug-induced symptoms of anaphylactoid responses are significantly reduced in knockout mice, and we identify a common chemical motif in several of these molecules that may help predict side effects of other compounds. These discoveries introduce a mouse model to study mast cell activation by basic secretagogues and identify MrgprX2 as a potential therapeutic target to reduce a subset of drug-induced adverse effects.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Immunology
                Nat Rev Immunol
                Springer Nature
                1474-1733
                1474-1741
                March 15 2019
                Article
                10.1038/s41577-019-0147-2
                6700742
                30874629
                a8dffe97-a80a-417f-90e9-8d8d4fcfd723
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article