17
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Three new species from Guangdong Province of China, and a molecular assessment of Hygrocybe subsection Hygrocybe

      research-article
      1 , 1 , 1 ,
      MycoKeys
      Pensoft Publishers
      Asia, black discoloration, new taxa, phylogeny, waxcaps

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Blackening waxcaps ( Hygrocybe subsect. Hygrocybe ) are a group of colorful and attractive mushrooms. However, the species diversity of subsect. Hygrocybe in China is still poorly known due to the limited sampling. In this study, three new species of this group from Guangdong Province, China are described and illustrated based on their morphological characteristics and molecular analyses of the internal transcribed spacer and large subunit ribosomal DNA regions. Hygrocybe debilipes from grasslands of South China Sea islands is mainly characterized by its orange red to vivid red pileus, fragile stipe, and ellipsoid to oblong basidiospores; H. griseonigricans from woodlands is characterized by its whitish to dull yellow pileus, quick black discoloration and the globose, subglobose to broadly ovoid basidiospores; H. rubroconica from woodlands is characterized by the hemispheric to plano-convex pileus when mature, semitranslucent fibrose stipe, and globose to ellipsoid basidiospores.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.

          The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine. Here, we report a transformation of Mega to enable cross-platform use on Microsoft Windows and Linux operating systems. Mega X does not require virtualization or emulation software and provides a uniform user experience across platforms. Mega X has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses. Mega X is available in two interfaces (graphical and command line) and can be downloaded from www.megasoftware.net free of charge.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies

            Large phylogenomics data sets require fast tree inference methods, especially for maximum-likelihood (ML) phylogenies. Fast programs exist, but due to inherent heuristics to find optimal trees, it is not clear whether the best tree is found. Thus, there is need for additional approaches that employ different search strategies to find ML trees and that are at the same time as fast as currently available ML programs. We show that a combination of hill-climbing approaches and a stochastic perturbation method can be time-efficiently implemented. If we allow the same CPU time as RAxML and PhyML, then our software IQ-TREE found higher likelihoods between 62.2% and 87.1% of the studied alignments, thus efficiently exploring the tree-space. If we use the IQ-TREE stopping rule, RAxML and PhyML are faster in 75.7% and 47.1% of the DNA alignments and 42.2% and 100% of the protein alignments, respectively. However, the range of obtaining higher likelihoods with IQ-TREE improves to 73.3-97.1%.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates

              Model-based molecular phylogenetics plays an important role in comparisons of genomic data, and model selection is a key step in all such analyses. We present ModelFinder, a fast model-selection method that greatly improves the accuracy of phylogenetic estimates. The improvement is achieved by incorporating a model of rate-heterogeneity across sites not previously considered in this context, and by allowing concurrent searches of model-space and tree-space.
                Bookmark

                Author and article information

                Contributors
                Journal
                MycoKeys
                MycoKeys
                11
                urn:lsid:arphahub.com:pub:C004A564-9D6A-5F9F-B058-6A3815DFE9C3
                MycoKeys
                Pensoft Publishers
                1314-4057
                1314-4049
                2020
                09 December 2020
                : 75
                : 145-161
                Affiliations
                [1 ] Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China Guangdong Institute of Microbiology Guangzhou China
                Author notes
                Corresponding author: Tai-Hui Li ( mycolab@ 123456263.net )

                Academic editor: M. P. Martín

                Article
                59600
                10.3897/mycokeys.75.59600
                7744385
                a8e255f5-f415-48d3-8ad8-9917ab37ab7b
                Chao-Qun Wang, Ming Zhang, Tai-Hui Li

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 13 October 2020
                : 11 November 2020
                Categories
                Research Article
                Agaricales
                Agaricomycetes
                Hygrophoraceae
                Phylogeny
                Taxonomy
                Asia
                China

                asia,black discoloration,new taxa,phylogeny,waxcaps
                asia, black discoloration, new taxa, phylogeny, waxcaps

                Comments

                Comment on this article