75
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insights into Vibrio cholerae Intestinal Colonization from Monitoring Fluorescently Labeled Bacteria

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vibrio cholerae, the agent of cholera, is a motile non-invasive pathogen that colonizes the small intestine (SI). Most of our knowledge of the processes required for V. cholerae intestinal colonization is derived from enumeration of wt and mutant V. cholerae recovered from orogastrically infected infant mice. There is limited knowledge of the distribution of V. cholerae within the SI, particularly its localization along the villous axis, or of the bacterial and host factors that account for this distribution. Here, using confocal and intravital two-photon microscopy to monitor the localization of fluorescently tagged V. cholerae strains, we uncovered unexpected and previously unrecognized features of V. cholerae intestinal colonization. Direct visualization of the pathogen within the intestine revealed that the majority of V. cholerae microcolonies attached to the intestinal epithelium arise from single cells, and that there are notable regiospecific aspects to V. cholerae localization and factors required for colonization. In the proximal SI, V. cholerae reside exclusively within the developing intestinal crypts, but they are not restricted to the crypts in the more distal SI. Unexpectedly, V. cholerae motility proved to be a regiospecific colonization factor that is critical for colonization of the proximal, but not the distal, SI. Furthermore, neither motility nor chemotaxis were required for proper V. cholerae distribution along the villous axis or in crypts, suggesting that yet undefined processes enable the pathogen to find its niches outside the intestinal lumen. Finally, our observations suggest that host mucins are a key factor limiting V. cholerae intestinal colonization, particularly in the proximal SI where there appears to be a more abundant mucus layer. Collectively, our findings demonstrate the potent capacity of direct pathogen visualization during infection to deepen our understanding of host pathogen interactions.

          Author Summary

          Vibrio cholerae is a highly motile bacterium that causes the diarrheal disease cholera. Despite our extensive knowledge of the genes and processes that enable this non-invasive pathogen to colonize the small intestine, there is limited knowledge of the pathogen's fine localization within the intestine. Here, we used fluorescence microscopy-based techniques to directly monitor where and how fluorescent V. cholerae localize along intestinal villi in infected infant mice. This approach enabled us to uncover previously unappreciated features of V. cholerae intestinal colonization. We found that most V. cholerae microcolonies appear to arise from single cells attached to the epithelium. Unexpectedly, we observed considerable differences between V. cholerae fine localization in different parts of the small intestine and found that V. cholerae motility exerts a regiospecific influence on colonization. The abundance of intestinal mucins appears to be an important factor explaining at least some of the regiospecific aspects of V. cholerae intestinal localization. Overall, our findings suggest that direct observation of fluorescent pathogens during infection, coupled with genetic and/or pharmacologic manipulations of pathogen and host processes, adds a valuable depth to understanding of host-pathogen interactions.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Existing and potential therapeutic uses for N-acetylcysteine: the need for conversion to intracellular glutathione for antioxidant benefits.

          N-acetyl-l-cysteine (NAC) has long been used therapeutically for the treatment of acetaminophen (paracetamol) overdose, acting as a precursor for the substrate (l-cysteine) in synthesis of hepatic glutathione (GSH) depleted through drug conjugation. Other therapeutic uses of NAC have also emerged, including the alleviation of clinical symptoms of cystic fibrosis through cysteine-mediated disruption of disulfide cross-bridges in the glycoprotein matrix in mucus. More recently, however, a wide range of clinical studies have reported on the use of NAC as an antioxidant, most notably in the protection against contrast-induced nephropathy and thrombosis. The results from these studies are conflicting and a consensus is yet to be reached regarding the merits or otherwise of NAC in the antioxidant setting. This review seeks to re-evaluate the mechanism of action of NAC as a precursor for GSH synthesis in the context of its activity as an "antioxidant". Results from recent studies are examined to establish whether the pre-requisites for effective NAC-induced antioxidant activity (i.e. GSH depletion and the presence of functional metabolic pathways for conversion of NAC to GSH) have received adequate consideration in the interpretation of the data. A key conclusion is a reinforcement of the concept that NAC should not be considered to be a powerful antioxidant in its own right: its strength is the targeted replenishment of GSH in deficient cells and it is likely to be ineffective in cells replete in GSH. © 2013.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation.

            CD103+ dendritic cells (DCs) carry bacteria from the small intestine and can present antigens to T cells. Yet they have not been recorded sampling luminal bacteria or presenting bacterial antigens in mesentery lymph nodes. We used 2-photon microscopy in live Cx3cr1(+/gfp) ×Cd11c-YFP mice to study these processes. At steady state, sparse CD103+ DCs occupied the epithelium. They patrolled among enterocytes while extending dendrites toward the lumen, likely using tight-junction proteins to penetrate the epithelium. Challenge with Salmonella triggered chemokine- and toll-like receptor (TLR)-dependent recruitment of additional DCs from the lamina propria (LP). The DCs efficiently phagocytosed the bacteria using intraepithelial dendrites. Noninvasive bacteria were similarly sampled. In contrast, CD103+ DCs sampled soluble luminal antigen inefficiently. In mice harboring CD103+ DCs, antigen-specific CD8 T cells were subsequently activated in MLNs. Intestinal CD103+ DCs are therefore equipped with unique mechanisms to independently complete the processes of uptake, transportation, and presentation of bacterial antigens. Copyright © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement

              Cells lining the gastrointestinal tract serve as both a barrier to and a pathway for infectious agent entry. Dendritic cells (DCs) present in the lamina propria under the columnar villus epithelium of the small bowel extend processes across this epithelium and capture bacteria, but previous studies provided limited information on the nature of the stimuli, receptors, and signaling events involved in promoting this phenomenon. Here, we use immunohistochemical as well as dynamic explant and intravital two-photon imaging to investigate this issue. Analysis of CD11c–enhanced green fluorescent protein (EGFP) or major histocompatibility complex CII-EGFP mice revealed that the number of trans-epithelial DC extensions, many with an unusual “balloon” shape, varies along the length of the small bowel. High numbers of such extensions were found in the proximal jejunum, but only a few were present in the terminal ileum. The extensions in the terminal ileum markedly increased upon the introduction of invasive or noninvasive Salmonella organisms, and chimeric mouse studies revealed the key role of MyD88-dependent Toll-like receptor (TLR) signaling by nonhematopoietic (epithelial) elements in the DC extension response. Collectively, these findings support a model in which epithelial cell TLR signaling upon exposure to microbial stimuli induces active DC sampling of the gut lumen at sites distant from organized lymphoid tissues.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                October 2014
                2 October 2014
                : 10
                : 10
                : e1004405
                Affiliations
                [1 ]Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
                [2 ]Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
                [3 ]Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
                University of Texas, San Antonio, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: YAM DA MKW. Performed the experiments: YAM DA SR MKW. Analyzed the data: YAM DA SR BMD UHvA MKW. Contributed reagents/materials/analysis tools: YAM DA SR. Contributed to the writing of the manuscript: YAM DA SR BMD MKW.

                [¤]

                Current address: Max Planck Institute for Terrestrial Microbiology, Marburg, Germany

                Article
                PPATHOGENS-D-14-01007
                10.1371/journal.ppat.1004405
                4183697
                25275396
                a8e393a5-638e-4fd1-a3c4-f7ba47762f3a
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 29 April 2014
                : 15 August 2014
                Page count
                Pages: 14
                Funding
                MKW was supported by NIH R37-AI-042347 and Howard Hughes Medical Institute. UHvA was supported by NIH RO1 AI111595, RO1 AI069259 and U19 AI095261. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Microbiology
                Animal Models of Infection
                Bacteriology
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article