8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Below the Mesophotic

      , 1 , 2 , 3

      Scientific Reports

      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mesophotic coral ecosystems, which occur at depths of ~40 to 150 m, have received recent scientific attention as potential refugia for organisms inhabiting deteriorating shallow reefs. These ecosystems merit research in their own right, as they harbor both depth-generalist species and a distinctive reef-fish fauna. Reef ecosystems just below the mesophotic are globally underexplored, and the scant recent literature that mentions them often suggests that mesophotic ecosystems transition directly into those of the deep sea. Through submersible-based surveys in the Caribbean Sea, we amassed the most extensive database to date on reef-fish diversity between ~40 and 309 m at any single tropical location. Our data reveal a unique reef-fish assemblage living between ~130 and 309 m that, while taxonomically distinct from shallower faunas, shares strong evolutionary affinities with them. Lacking an existing name for this reef-faunal zone immediately below the mesophotic but above the deep aphotic, we propose “rariphotic.” Together with the “altiphotic,” proposed here for the shallowest reef-faunal zone, and the mesophotic, the rariphotic is part of a depth continuum of discrete faunal zones of tropical reef fishes, and perhaps of reef ecosystems in general, all of which warrant further study in light of global declines of shallow reefs.

          Related collections

          Most cited references 59

          • Record: found
          • Abstract: not found
          • Article: not found

          Assessing the ‘deep reef refugia’ hypothesis: focus on Caribbean reefs

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Tree of Life and a New Classification of Bony Fishes

            The tree of life of fishes is in a state of flux because we still lack a comprehensive phylogeny that includes all major groups. The situation is most critical for a large clade of spiny-finned fishes, traditionally referred to as percomorphs, whose uncertain relationships have plagued ichthyologists for over a century. Most of what we know about the higher-level relationships among fish lineages has been based on morphology, but rapid influx of molecular studies is changing many established systematic concepts. We report a comprehensive molecular phylogeny for bony fishes that includes representatives of all major lineages. DNA sequence data for 21 molecular markers (one mitochondrial and 20 nuclear genes) were collected for 1410 bony fish taxa, plus four tetrapod species and two chondrichthyan outgroups (total 1416 terminals). Bony fish diversity is represented by 1093 genera, 369 families, and all traditionally recognized orders. The maximum likelihood tree provides unprecedented resolution and high bootstrap support for most backbone nodes, defining for the first time a global phylogeny of fishes. The general structure of the tree is in agreement with expectations from previous morphological and molecular studies, but significant new clades arise. Most interestingly, the high degree of uncertainty among percomorphs is now resolved into nine well-supported supraordinal groups. The order Perciformes, considered by many a polyphyletic taxonomic waste basket, is defined for the first time as a monophyletic group in the global phylogeny. A new classification that reflects our phylogenetic hypothesis is proposed to facilitate communication about the newly found structure of the tree of life of fishes. Finally, the molecular phylogeny is calibrated using 60 fossil constraints to produce a comprehensive time tree. The new time-calibrated phylogeny will provide the basis for and stimulate new comparative studies to better understand the evolution of the amazing diversity of fishes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Community ecology of mesophotic coral reef ecosystems

                Bookmark

                Author and article information

                Contributors
                baldwinc@si.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                20 March 2018
                20 March 2018
                2018
                : 8
                Affiliations
                [1 ]ISNI 0000 0000 8716 3312, GRID grid.1214.6, Department of Vertebrate Zoology, National Museum of Natural History, , Smithsonian Institution, ; Washington, DC 20560 USA
                [2 ]ISNI 0000000122986657, GRID grid.34477.33, School of Aquatic and Fishery Sciences, Burke Museum of Natural History and Culture, , University of Washington, ; Seattle, WA 98195 USA
                [3 ]ISNI 0000 0001 2296 9689, GRID grid.438006.9, Smithsonian Tropical Research Institute, ; Balboa, Republic of Panama
                Article
                23067
                10.1038/s41598-018-23067-1
                5861108
                29559694
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized

                Comments

                Comment on this article