25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification and antimicrobial resistance prevalence of pathogenic Escherichia coli strains from treated wastewater effluents in Eastern Cape, South Africa

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antimicrobial resistance ( AMR) is a global problem impeding the effective prevention/treatment of an ever‐growing array of infections caused by pathogens; a huge challenge threatening the achievements of modern medicine. In this paper, we report the occurrence of multidrug resistance ( MDR) in Escherichia coli strains isolated from discharged final effluents of two wastewater treatment facilities in the Eastern Cape Province of South Africa. Standard disk diffusion method was employed to determine the antibiotic susceptibility profile of 223 polymerase chain reaction ( PCR)‐confirmed Ecoli isolates against 17 common antibiotics in human therapy and veterinary medicine. Seven virulence associated and fourteen antibiotic resistance genes were also evaluated by molecular methods. Molecular characterization revealed five pathotypes of E. coli in the following proportions: enterotoxigenic ETEC (1.4%), enteropathogenic EPEC (7.6%), enteroaggregative EAEC (7.6%), neonatal meningitis ( NMEC) (14.8%), uropathogenic (41.7%), and others (26.9%). Isolates showed varying (1.7–70.6%) degrees of resistance to 15 of the test antibiotics. Multidrug resistance was exhibited by 32.7% of the isolates, with the commonest multiple antibiotic‐resistant phenotype ( MARP) being AP‐T‐ CFX (12 isolates), while multiple antibiotic‐resistant indices ( MARI) estimated are 0.23 (Site 1) and 0.24 (Site 2). Associated antibiotic resistance genes detected in the isolates include: strA (88.2%), aadA (52.9%), cat I (15%), cmlA1 (4.6%), bla TEM (56.4%), tetA (30.4%), tetB (28.4%), tetC (42.2%), tetD (50%), tetK (11.8%), and tetM (68.6%). We conclude that municipal wastewater effluents are important reservoirs for the dissemination of potentially pathogenic E. coli (and possibly other pathogens) and antibiotic resistance genes in the aquatic milieu of the Eastern Cape and a risk to public health.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study

          Summary Background Gram-negative Enterobacteriaceae with resistance to carbapenem conferred by New Delhi metallo-β-lactamase 1 (NDM-1) are potentially a major global health problem. We investigated the prevalence of NDM-1, in multidrug-resistant Enterobacteriaceae in India, Pakistan, and the UK. Methods Enterobacteriaceae isolates were studied from two major centres in India—Chennai (south India), Haryana (north India)—and those referred to the UK's national reference laboratory. Antibiotic susceptibilities were assessed, and the presence of the carbapenem resistance gene bla NDM-1 was established by PCR. Isolates were typed by pulsed-field gel electrophoresis of XbaI-restricted genomic DNA. Plasmids were analysed by S1 nuclease digestion and PCR typing. Case data for UK patients were reviewed for evidence of travel and recent admission to hospitals in India or Pakistan. Findings We identified 44 isolates with NDM-1 in Chennai, 26 in Haryana, 37 in the UK, and 73 in other sites in India and Pakistan. NDM-1 was mostly found among Escherichia coli (36) and Klebsiella pneumoniae (111), which were highly resistant to all antibiotics except to tigecycline and colistin. K pneumoniae isolates from Haryana were clonal but NDM-1 producers from the UK and Chennai were clonally diverse. Most isolates carried the NDM-1 gene on plasmids: those from UK and Chennai were readily transferable whereas those from Haryana were not conjugative. Many of the UK NDM-1 positive patients had travelled to India or Pakistan within the past year, or had links with these countries. Interpretation The potential of NDM-1 to be a worldwide public health problem is great, and co-ordinated international surveillance is needed. Funding European Union, Wellcome Trust, and Wyeth.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review.

            Urban wastewater treatment plants (UWTPs) are among the main sources of antibiotics' release into the environment. The occurrence of antibiotics may promote the selection of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB), which shade health risks to humans and animals. In this paper the fate of ARB and ARGs in UWTPs, focusing on different processes/technologies (i.e., biological processes, advanced treatment technologies and disinfection), was critically reviewed. The mechanisms by which biological processes influence the development/selection of ARB and ARGs transfer are still poorly understood. Advanced treatment technologies and disinfection process are regarded as a major tool to control the spread of ARB into the environment. In spite of intense efforts made over the last years to bring solutions to control antibiotic resistance spread in the environment, there are still important gaps to fill in. In particular, it is important to: (i) improve risk assessment studies in order to allow accurate estimates about the maximal abundance of ARB in UWTPs effluents that would not pose risks for human and environmental health; (ii) understand the factors and mechanisms that drive antibiotic resistance maintenance and selection in wastewater habitats. The final objective is to implement wastewater treatment technologies capable of assuring the production of UWTPs effluents with an acceptable level of ARB. Copyright © 2013 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods.

              Escherichia coli isolates taken from environments considered to have low and high enteric disease potential for humans were screened against 12 antibiotics to determine the prevalence of multiple antibiotic resistance among the isolates of these environments. It was determined that multiple-antibiotic-resistant E. coli organisms exist in large numbers within the major reservoirs of enteric diseases for humans while existing in comparatively low numbers elsewhere. These differences provide a method for distinguishing high-risk contamination of foods by indexing the frequency with which multiple-antibiotic-resistant E. coli organisms occur among isolates taken from a sample.
                Bookmark

                Author and article information

                Journal
                Microbiologyopen
                Microbiologyopen
                10.1002/(ISSN)2045-8827
                MBO3
                MicrobiologyOpen
                John Wiley and Sons Inc. (Hoboken )
                2045-8827
                13 January 2016
                February 2016
                : 5
                : 1 ( doiID: 10.1002/mbo3.2016.5.issue-1 )
                : 143-151
                Affiliations
                [ 1 ] SAMRC Microbial Water Quality Monitoring CentreUniversity of Fort Hare Alice 5700South Africa
                [ 2 ] Applied and Environmental Microbiology Research Group Department of Biochemistry and MicrobiologyUniversity of Fort Hare Alice 5700South Africa
                Author notes
                [*] [* ] Correspondence

                Martins A. Adefisoye, SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa. Tel: +27 746 641 731; Fax: +27 866 286 824; E‐mail: martinstama@ 123456yahoo.com

                Article
                MBO3319
                10.1002/mbo3.319
                4767426
                26758686
                a8f3f459-3e22-4780-bba3-f53c6cc28728
                © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 July 2015
                : 02 November 2015
                : 03 November 2015
                Page count
                Pages: 9
                Funding
                Funded by: South African Water Research Commission (WRC)
                Funded by: South Africa Medical Research Council
                Funded by: National Research Foundation of South Africa (NRF)
                Categories
                Original Research
                Original Research
                Custom metadata
                2.0
                mbo3319
                February 2016
                Converter:WILEY_ML3GV2_TO_NLMPMC version:4.7.6 mode:remove_FC converted:25.02.2016

                Microbiology & Virology
                antibiotic‐resistance gene,e. coli,mari,marp,multidrug resistance,public health

                Comments

                Comment on this article