9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Myrciaria tenella (DC.) O. Berg (Myrtaceae) Leaves as a Source of Antioxidant Compounds

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Myrciaria species are widely studied to identify their chemical composition and evaluate their biological activity. Since evidence supporting the potential antioxidant and antiproliferative activity of Myrciaria tenella is lacking, the aim of this work was to evaluate these activities in six different leaf extracts: hexane (CHE), chloroform (CCE), ethanolic (CEE), methanolic (CME), aqueous final (CFAE), and only aqueous (CAE). The presence of phenolic compounds, tannin, saponin, and ursolic acid was determined by thin layer chromatography (TLC). CEE, CME, and CFAE showed in vitro antioxidant activity at the initiation, propagation, and termination stages of oxidative damage. Moreover, no toxicity was observed in the 3T3 non-cancerous cell line. On the other hand, all extracts promoted cell death in the tumor cell lines human cervical adenocarcinoma cell line (HeLa) and human stomach gastric adenocarcinoma cell line (AGS). Based on these results, the effect of CEE on the AGS cell line was analyzed using flow cytometry, and necrosis and late apoptosis were observed. Finally, the Caenorhabditis elegans model showed that CEE was able to reduce the basal reactive oxygen species (ROS) level. Ultra-performance liquid chromatography (UPLC) analysis showed rutin as the major compound in CEE. Therefore, Myrciaria tenella fresh leaves may be potential sources of molecules possessing antioxidant and antiproliferative activities.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Plant derived and dietary phenolic antioxidants: anticancer properties.

          In this paper, a review of the literature on the phenolic compounds with anticancer activity published between 2008 and 2012 is presented. In this overview only phenolic antioxidant compounds that display significant anticancer activity have been described. In the first part of this review, the oxidative and nitrosative stress relation with cancer are described. In the second part, the plant-derived food extracts, containing identified phenolic antioxidants, the phenolic antioxidants isolated from plants and plant-derived food or commercially available and the synthetic ones, along with the type of cancer and cells where they exert anticancer activity, are described and summarized in tables. The principal mechanisms for their anti-proliferative effects were also described. Finally, a critical analysis of the studies and directions for future research are included in the conclusion.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recent advances in biologically active compounds in herbs and spices: a review of the most effective antioxidant and anti-inflammatory active principles.

            Spices, like vegetables, fruit, and medicinal herbs, are known to possess a variety of antioxidant effects and other biological activities. Phenolic compounds in these plant materials are closely associated with their antioxidant activity, which is mainly due to their redox properties and their capacity to block the production of reactive oxygen species. More recently, their ability to interfere with signal transduction pathways involving various transcription factors, protein kinases, phosphatases, and other metabolic enzymes has also been demonstrated. Many of the spice-derived compounds which are potent antioxidants are of great interest to biologists and clinicians because they may help protect the human body against oxidative stress and inflammatory processes. It is important to study the bioactive compounds that can modulate target functions related to defence against oxidative stress, and that might be used to achieve health benefits individually. In the present review, an attempt has been made to summarize the most current scientific evidence about the in vitro and in vivo effects of the bioactive compounds derived from herbs and spices, focused on anti-inflammatory and antioxidant effects, in order to provide science-based evidence for the traditional uses and develop either functional foods or nutraceuticals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases.

              The oxidation of bioorganic materials by air and, particularly, the oxidative stress involved in the cell loss and other pathologies associated with neurodegenerative diseases (NDs) are of enormous social and economic importance. NDs generally involve free radical reactions, beginning with the formation of an initiating radical by some redox, thermal or photochemical process, causing nucleic acid, protein and lipid oxidations and the production of harmful oxidative products. Physically, persons afflicted by NDs suffer progressive loss of memory and thinking ability, mood swings, personality changes, and loss of independence. Therefore, the development of antioxidant strategies to retard or minimize the oxidative degradation of bioorganic materials has been, and still is, of paramount importance. While we are aware of the importance of investigating the biological and medical aspects of the diseases, elucidation of the associated chemistry is crucial to understanding their progression, heading to intelligent chemical intervention to find more efficient therapies to prevent or delay the onset of the diseases. Accordingly, this review aims to provide the reader with a chemical base to understand the behavior and properties of the reactive oxygen species involved and of typical radical scavengers such as polyphenolic antioxidants. Some discussion on the structures of the various species, their formation, chemical reactivities and lifetimes is included. The ultimate goal is to understand how, when and where they form, how far they travel prior to react, which molecules are their targets, and how we can, eventually, control their activity to minimize their impact by means of chemical methods. Recent strategies explore chemical modifications of the hydrophobicity of potent, natural antioxidants to improve their efficiency by fine-tuning their concentrations at the reaction site.
                Bookmark

                Author and article information

                Journal
                Antioxidants (Basel)
                Antioxidants (Basel)
                antioxidants
                Antioxidants
                MDPI
                2076-3921
                15 August 2019
                August 2019
                : 8
                : 8
                : 310
                Affiliations
                [1 ]Programa de Pós-Graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte-UFRN, Centro de Biociências, Natal, Rio Grande do Norte (RN) 59.072-970, Brazil
                [2 ]Laboratório de Transformação de Plantas e Análise de Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Centro de Biociências, UFRN, Natal-RN 59.072-970, Brazil
                [3 ]Laboratório de Produtos Naturais (PNBio), Departamento de Farmácia, Centro da Saúde, UFRN, Natal-RN 59012-570, Brazil
                [4 ]Laboratório de Controle de Qualidade de Medicamentos (LCQMed), Departamento de Farmácia, Centro da Saúde, UFRN, Natal-RN 59012-570, Brazil
                [5 ]Laboratório de Genética Bioquímica (LGB), Departamento de Biologia Celular e Genética, Centro de Biociências, UFRN, Natal-RN 59.072-970, Brazil
                [6 ]Instituto Federal de Educação, Ciência e Tecnologia do Piauí – IFPI, Terezina-PI 64000.00, Brazil
                [7 ]Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, UFRN, Natal-RN 59.072-970, Brazil
                Author notes
                [* ]Correspondence: kacscort@ 123456yahoo.com
                Author information
                https://orcid.org/0000-0003-1102-9784
                https://orcid.org/0000-0002-5560-9687
                https://orcid.org/0000-0002-3434-2602
                https://orcid.org/0000-0002-2768-0793
                Article
                antioxidants-08-00310
                10.3390/antiox8080310
                6720161
                31443307
                a9005d0c-9143-4020-82fd-4c360e384d9f
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 17 June 2019
                : 19 July 2019
                Categories
                Article

                medicinal plants,cambuí,myrtaceae,phenolic compounds,antioxidant,antiproliferative,tumor cell line,caenorhabditis elegans

                Comments

                Comment on this article