34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Whole Genome Sequencing Reveals Local Transmission Patterns of Mycobacterium bovis in Sympatric Cattle and Badger Populations

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Whole genome sequencing (WGS) technology holds great promise as a tool for the forensic epidemiology of bacterial pathogens. It is likely to be particularly useful for studying the transmission dynamics of an observed epidemic involving a largely unsampled ‘reservoir’ host, as for bovine tuberculosis (bTB) in British and Irish cattle and badgers. BTB is caused by Mycobacterium bovis, a member of the M. tuberculosis complex that also includes the aetiological agent for human TB. In this study, we identified a spatio-temporally linked group of 26 cattle and 4 badgers infected with the same Variable Number Tandem Repeat (VNTR) type of M. bovis. Single-nucleotide polymorphisms (SNPs) between sequences identified differences that were consistent with bacterial lineages being persistent on or near farms for several years, despite multiple clear whole herd tests in the interim. Comparing WGS data to mathematical models showed good correlations between genetic divergence and spatial distance, but poor correspondence to the network of cattle movements or within-herd contacts. Badger isolates showed between zero and four SNP differences from the nearest cattle isolate, providing evidence for recent transmissions between the two hosts. This is the first direct genetic evidence of M. bovis persistence on farms over multiple outbreaks with a continued, ongoing interaction with local badgers. However, despite unprecedented resolution, directionality of transmission cannot be inferred at this stage. Despite the often notoriously long timescales between time of infection and time of sampling for TB, our results suggest that WGS data alone can provide insights into TB epidemiology even where detailed contact data are not available, and that more extensive sampling and analysis will allow for quantification of the extent and direction of transmission between cattle and badgers.

          Author Summary

          Whole genome sequencing (WGS) offers the potential for unprecedented insight into infectious diseases spread at the individual-to-individual level. However, this potential can be compromised when a poorly sampled ‘reservoir’ population contributes to transmission, as strong biases in the obtained data are inevitable. Therefore WGS data must be corroborated with epidemiological data in well-described systems, in order to enhance our confidence in their broader use. The epidemic of bovine tuberculosis (bTB) in British and Irish cattle has both economic and animal health importance; it also involves a management host (the cattle) whose demographic history is exceptionally well-documented, and with a reservoir host (the badgers) whose role in bTB spread has defied decades of study and observation. Here, we show that the observed spatial patterns provide a good match to M. bovis WGS data, but cattle movement networks and within-herd transmission patterns generated by mathematical models do not. Thus WGS offers considerable promise for revealing basic principles about bTB maintenance in British cattle and the role of badgers, as well as suggesting that similar approaches combining mathematical models and WGS data could be useful for the study of human TB and other infectious diseases where sampling biases are known to exist.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood.

          The increase in the number of large data sets and the complexity of current probabilistic sequence evolution models necessitates fast and reliable phylogeny reconstruction methods. We describe a new approach, based on the maximum- likelihood principle, which clearly satisfies these requirements. The core of this method is a simple hill-climbing algorithm that adjusts tree topology and branch lengths simultaneously. This algorithm starts from an initial tree built by a fast distance-based method and modifies this tree to improve its likelihood at each iteration. Due to this simultaneous adjustment of the topology and branch lengths, only a few iterations are sufficient to reach an optimum. We used extensive and realistic computer simulations to show that the topological accuracy of this new method is at least as high as that of the existing maximum-likelihood programs and much higher than the performance of distance-based and parsimony approaches. The reduction of computing time is dramatic in comparison with other maximum-likelihood packages, while the likelihood maximization ability tends to be higher. For example, only 12 min were required on a standard personal computer to analyze a data set consisting of 500 rbcL sequences with 1,428 base pairs from plant plastids, thus reaching a speed of the same order as some popular distance-based and parsimony algorithms. This new method is implemented in the PHYML program, which is freely available on our web page: http://www.lirmm.fr/w3ifa/MAAS/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mauve: multiple alignment of conserved genomic sequence with rearrangements.

            As genomes evolve, they undergo large-scale evolutionary processes that present a challenge to sequence comparison not posed by short sequences. Recombination causes frequent genome rearrangements, horizontal transfer introduces new sequences into bacterial chromosomes, and deletions remove segments of the genome. Consequently, each genome is a mosaic of unique lineage-specific segments, regions shared with a subset of other genomes and segments conserved among all the genomes under consideration. Furthermore, the linear order of these segments may be shuffled among genomes. We present methods for identification and alignment of conserved genomic DNA in the presence of rearrangements and horizontal transfer. Our methods have been implemented in a software package called Mauve. Mauve has been applied to align nine enterobacterial genomes and to determine global rearrangement structure in three mammalian genomes. We have evaluated the quality of Mauve alignments and drawn comparison to other methods through extensive simulations of genome evolution. Copyright 2004 Cold Spring Harbor Laboratory Press ISSN
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Monte Carlo sampling methods using Markov chains and their applications

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                November 2012
                November 2012
                29 November 2012
                : 8
                : 11
                : e1003008
                Affiliations
                [1 ]Boyd Orr Centre for Population and Ecosystem Health and Institute for Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
                [2 ]Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stormont, Belfast, Northern Ireland, United Kingdom
                [3 ]School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
                University of Oxford, United Kingdom
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: RB AO TM SM RAS RRK. Performed the experiments: SM CM. Analyzed the data: RB AO DW RJO HT RRK. Wrote the paper: RB AOH RRK.

                Article
                PPATHOGENS-D-11-02784
                10.1371/journal.ppat.1003008
                3510252
                23209404
                a911f5d5-e9e1-422f-a4ac-95ea3f664d23
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 16 December 2011
                : 17 September 2012
                Page count
                Pages: 13
                Funding
                RRK, AO, RJO and costs of sequencing were funded by a Wellcome Trust Senior Research Fellowship (RRK). RB was supported by the Research and Policy for Infectious Disease Dynamics (RAPIDD) program of the Science and Technology Directorate, U.S. Department of Homeland Security, and the Fogarty International Center, NIH. HT was funded by a BBSRC DTG studentship. Work at AFBI was funded under DARD0407. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Computational Biology
                Ecology
                Genomics
                Population Biology
                Mathematics
                Nonlinear Dynamics
                Veterinary Science
                Veterinary Diseases
                Veterinary Epidemiology

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article