2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Case Report: Targeting 2 Antigens as a Promising Strategy in Mixed Phenotype Acute Leukemia: Combination of Blinatumomab With Gemtuzumab Ozogamicin in an Infant With a KMT2A-Rearranged Leukemia

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mixed phenotype acute leukemia (MPAL) accounts for 2-5% of leukemia in children. MPAL are at higher risk of induction failure. Lineage switch (B to M or vice versa) or persistence of only the lymphoid or myeloid clone is frequently observed in biphenotypic/bilineal cases, highlighting their lineage plasticity. The prognosis of MPAL remains bleak, with an event-free survival (EFS) of less than 50% in children. A lymphoid-type therapeutic approach appears to be more effective but failures to achieve complete remission (CR) remain significant. KMT2A fusions account for 75-80% of leukemia in infants under one year of age and remains a major pejorative prognostic factor in the Interfant-06 protocol with a 6 years EFS of only 36%. The search for other therapeutic approaches, in particular immunotherapies that are able to eradicate all MPAL clones, is a major issue. We describe here the feasibility and tolerance of the combination of two targeted immunotherapies, blinatumomab and Gemtuzumab Ozogamicin, in a 4-year-old infant with a primary refractory KTM2A-rearranged MPAL. Our main concern was to determine how to associate these two immunotherapies and we describe how we decided to do it with the parents’ agreement. The good MRD response on the two clones made it possible to continue the curative intent with a hematopoietic stem cell transplant at 9 months of age. Despite a relapse at M11 post-transplant because of the recurrence of a pro-B clone retaining the initial lymphoid phenotype, the child is now 36 months old, in persistent negative MRD CR2 for 12 months after a salvage chemotherapy and an autologous CAR T cells infusion, with no known sequelae to date. This case study can thus lead to the idea of a sequential combination of two immunotherapies targeting two distinct leukemic subclones (or even a single biphenotypic clone), as a potential one to be tested prospectively in children MPAL and even possibly all KMT2A-rearranged infant ALL.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia.

          The World Health Organization (WHO) classification of tumors of the hematopoietic and lymphoid tissues was last updated in 2008. Since then, there have been numerous advances in the identification of unique biomarkers associated with some myeloid neoplasms and acute leukemias, largely derived from gene expression analysis and next-generation sequencing that can significantly improve the diagnostic criteria as well as the prognostic relevance of entities currently included in the WHO classification and that also suggest new entities that should be added. Therefore, there is a clear need for a revision to the current classification. The revisions to the categories of myeloid neoplasms and acute leukemia will be published in a monograph in 2016 and reflect a consensus of opinion of hematopathologists, hematologists, oncologists, and geneticists. The 2016 edition represents a revision of the prior classification rather than an entirely new classification and attempts to incorporate new clinical, prognostic, morphologic, immunophenotypic, and genetic data that have emerged since the last edition. The major changes in the classification and their rationale are presented here.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes.

            Recently the World Health Organization (WHO), in collaboration with the European Association for Haematopathology and the Society for Hematopathology, published a revised and updated edition of the WHO Classification of Tumors of the Hematopoietic and Lymphoid Tissues. The 4th edition of the WHO classification incorporates new information that has emerged from scientific and clinical studies in the interval since the publication of the 3rd edition in 2001, and includes new criteria for the recognition of some previously described neoplasms as well as clarification and refinement of the defining criteria for others. It also adds entities-some defined principally by genetic features-that have only recently been characterized. In this paper, the classification of myeloid neoplasms and acute leukemia is highlighted with the aim of familiarizing hematologists, clinical scientists, and hematopathologists not only with the major changes in the classification but also with the rationale for those changes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phase I/Phase II Study of Blinatumomab in Pediatric Patients With Relapsed/Refractory Acute Lymphoblastic Leukemia.

              Purpose Blinatumomab is a bispecific T-cell engager antibody construct targeting CD19 on B-cell lymphoblasts. We evaluated the safety, pharmacokinetics, recommended dosage, and potential for efficacy of blinatumomab in children with relapsed/refractory B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Methods This open-label study enrolled children < 18 years old with relapsed/refractory BCP-ALL in a phase I dosage-escalation part and a phase II part, using 6-week treatment cycles. Primary end points were maximum-tolerated dosage (phase I) and complete remission rate within the first two cycles (phase II). Results We treated 49 patients in phase I and 44 patients in phase II. Four patients had dose-limiting toxicities in cycle 1 (phase I). Three experienced grade 4 cytokine-release syndrome (one attributed to grade 5 cardiac failure); one had fatal respiratory failure. The maximum-tolerated dosage was 15 µg/m(2)/d. Blinatumomab pharmacokinetics was linear across dosage levels and consistent among age groups. On the basis of the phase I data, the recommended blinatumomab dosage for children with relapsed/refractory ALL was 5 µg/m(2)/d for the first 7 days, followed by 15 µg/m(2)/d thereafter. Among the 70 patients who received the recommended dosage, 27 (39%; 95% CI, 27% to 51%) achieved complete remission within the first two cycles, 14 (52%) of whom achieved complete minimal residual disease response. The most frequent grade ≥ 3 adverse events were anemia (36%), thrombocytopenia (21%), and hypokalemia (17%). Three patients (4%) and one patient (1%) had cytokine-release syndrome of grade 3 and 4, respectively. Two patients (3%) interrupted treatment after grade 2 seizures. Conclusion This trial, which to the best of our knowledge was the first such trial in pediatrics, demonstrated antileukemic activity of single-agent blinatumomab with complete minimal residual disease response in children with relapsed/refractory BCP-ALL. Blinatumomab may represent an important new treatment option in this setting, requiring further investigation in curative indications.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                26 February 2021
                2021
                : 11
                : 637951
                Affiliations
                [1] 1 Department of Pediatric Hematology, University Robert Debre Hospital, Assistance Publique Hôpitaux de Paris (APHP) , Paris, France
                [2] 2 Department of Biological Hematology, University Robert Debre Hospital, APHP , Paris, France
                [3] 3 INSERM UMR_S1131, Institut de Recherche Saint-Louis, University of Paris , Paris, France
                [4] 4 Department of Genetics, University Robert Debre Hospital, APHP , Paris, France
                [5] 5 Transversal Unit for Therapeutic Patient Education, University Robert Debre Hospital, APHP , Paris, France
                [6] 6 University Institute of Hematology, University Saint-Louis Hospital, APHP , Paris, France
                Author notes

                Edited by: Alessandro Isidori, AORMN Hospital, Italy

                Reviewed by: Claudio Cerchione, Romagnolo Scientific Institute for the Study and Treatment of Tumors (IRCCS), Italy; Valentino Conter, Fondazione MBBM, Italy

                *Correspondence: Benoît Brethon, benoit.brethon@ 123456aphp.fr

                †These authors have contributed equally to this work

                This article was submitted to Hematologic Malignancies, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2021.637951
                7953899
                a915f3b0-fcff-4889-a1cc-9afe2640b416
                Copyright © 2021 Brethon, Lainey, Caye-Eude, Grain, Fenneteau, Yakouben, Roupret-Serzec, Le Mouel, Cavé and Baruchel

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 04 December 2020
                : 20 January 2021
                Page count
                Figures: 3, Tables: 1, Equations: 0, References: 14, Pages: 5, Words: 1971
                Categories
                Oncology
                Case Report

                Oncology & Radiotherapy
                mixed phenotype acute leukemia,infant,children,blinatumomab,gemtuzumab ozogamicin

                Comments

                Comment on this article