5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      New molecular diagnostic trends and biomarkers for amyotrophic lateral sclerosis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Control of microglial neurotoxicity by the fractalkine receptor.

          Microglia, the resident inflammatory cells of the CNS, are the only CNS cells that express the fractalkine receptor (CX3CR1). Using three different in vivo models, we show that CX3CR1 deficiency dysregulates microglial responses, resulting in neurotoxicity. Following peripheral lipopolysaccharide injections, Cx3cr1-/- mice showed cell-autonomous microglial neurotoxicity. In a toxic model of Parkinson disease and a transgenic model of amyotrophic lateral sclerosis, Cx3cr1-/- mice showed more extensive neuronal cell loss than Cx3cr1+ littermate controls. Augmenting CX3CR1 signaling may protect against microglial neurotoxicity, whereas CNS penetration by pharmaceutical CX3CR1 antagonists could increase neuronal vulnerability.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A yeast functional screen predicts new candidate ALS disease genes.

            Amyotrophic lateral sclerosis (ALS) is a devastating and universally fatal neurodegenerative disease. Mutations in two related RNA-binding proteins, TDP-43 and FUS, that harbor prion-like domains, cause some forms of ALS. There are at least 213 human proteins harboring RNA recognition motifs, including FUS and TDP-43, raising the possibility that additional RNA-binding proteins might contribute to ALS pathogenesis. We performed a systematic survey of these proteins to find additional candidates similar to TDP-43 and FUS, followed by bioinformatics to predict prion-like domains in a subset of them. We sequenced one of these genes, TAF15, in patients with ALS and identified missense variants, which were absent in a large number of healthy controls. These disease-associated variants of TAF15 caused formation of cytoplasmic foci when expressed in primary cultures of spinal cord neurons. Very similar to TDP-43 and FUS, TAF15 aggregated in vitro and conferred neurodegeneration in Drosophila, with the ALS-linked variants having a more severe effect than wild type. Immunohistochemistry of postmortem spinal cord tissue revealed mislocalization of TAF15 in motor neurons of patients with ALS. We propose that aggregation-prone RNA-binding proteins might contribute very broadly to ALS pathogenesis and the genes identified in our yeast functional screen, coupled with prion-like domain prediction analysis, now provide a powerful resource to facilitate ALS disease gene discovery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis.

              Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by loss of motor neurons in the brain and spinal cord, leading to muscle weakness and eventually death from respiratory failure. ALS is familial in about 10% of cases, with SOD1 mutations accounting for 20% of familial cases. Here we describe a consanguineous family segregating juvenile ALS in an autosomal recessive pattern and describe the genetic variant responsible for the disorder. We performed homozygosity mapping and direct sequencing to detect the genetic variant and tested the effect of this variant on a motor neuron-like cell line model (NSC34) expressing the wild-type or mutant gene. We identified a shared homozygosity region in affected individuals that spans ~120 kbp on chromosome 9p13.3 containing 9 RefSeq genes. Sequencing the SIGMAR1 gene revealed a mutation affecting a highly conserved amino acid located in the transmembrane domain of the encoded protein, sigma-1 receptor. The mutated protein showed an aberrant subcellular distribution in NSC34 cells. Furthermore, cells expressing the mutant protein were less resistant to apoptosis induced by endoplasmic reticulum stress. Sigma-1 receptors are known to have neuroprotective properties, and recently Sigmar1 knockout mice have been described to have motor deficiency. Our findings emphasize the role of sigma-1 receptors in motor neuron function and disease. Copyright © 2011 American Neurological Association.
                Bookmark

                Author and article information

                Journal
                Human Mutation
                Human Mutation
                Wiley
                1059-7794
                1098-1004
                January 15 2019
                April 2019
                January 21 2019
                April 2019
                : 40
                : 4
                : 361-373
                Affiliations
                [1 ]Department of PharmacyAristotle University of Thessaloniki Thessaloniki Greece
                [2 ]University of Athens School of Medicine Athens Greece
                [3 ]University of Thessaly School of Medicine Larisa Greece
                [4 ]Papageorgiou hospitalNeurology Clinic Thessaloniki Greece
                [5 ]University of Athens School of MedicineAiginition Hospital Athens Greece
                [6 ]Department of PharmacySchool of Health SciencesUniversity of Patras Patras Greece
                [7 ]Department of PharmacyCollege of Medicine and Health SciencesUnited Arab Emirates University Al Ain UAE
                Article
                10.1002/humu.23697
                30556231
                a9168c5c-727b-4f9f-88cb-3821a10d6205
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article