25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PoreWalker: A Novel Tool for the Identification and Characterization of Channels in Transmembrane Proteins from Their Three-Dimensional Structure

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transmembrane channel proteins play pivotal roles in maintaining the homeostasis and responsiveness of cells and the cross-membrane electrochemical gradient by mediating the transport of ions and molecules through biological membranes. Therefore, computational methods which, given a set of 3D coordinates, can automatically identify and describe channels in transmembrane proteins are key tools to provide insights into how they function.

          Herein we present PoreWalker, a fully automated method, which detects and fully characterises channels in transmembrane proteins from their 3D structures. A stepwise procedure is followed in which the pore centre and pore axis are first identified and optimised using geometric criteria, and then the biggest and longest cavity through the channel is detected. Finally, pore features, including diameter profiles, pore-lining residues, size, shape and regularity of the pore are calculated, providing a quantitative and visual characterization of the channel. To illustrate the use of this tool, the method was applied to several structures of transmembrane channel proteins and was able to identify shape/size/residue features representative of specific channel families. The software is available as a web-based resource at http://www.ebi.ac.uk/thornton-srv/software/PoreWalker/.

          Author Summary

          Transmembrane channel proteins are responsible for the transport of ions and molecules through biological membranes and are pivotal for the physiology of the cell. In fact, their incorrect functioning is involved or related to several diseases (diabetes, myotonia, Parkinson's disease, etc.). Moreover, their specificity and selectivity to different ions or molecules have been hypothesized and sometimes shown to strongly depend on the shape and size or amino acid composition of the channel. Therefore, computational methods to identify and quantitatively characterise channel geometry in transmembrane protein structures are key tools to better understand how they function. We have developed PoreWalker, a new method to detect and describe the geometry of these channels in transmembrane proteins from their 3D structures. The method is fully automated, very user-friendly, identifies the location of the channel and derives a number of channel features: diameter profiles at given heights along the channel, all the residues lining the channel walls, size, shape and regularity of the channel. These features can be very helpful in the study of how these channels might function. We have applied PoreWalker to several channel protein structures and were able to identify shape/size/residue features that were representative of specific channel families.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms.

          We have carried out detailed statistical analyses of integral membrane proteins of the helix-bundle class from eubacterial, archaean, and eukaryotic organisms for which genome-wide sequence data are available. Twenty to 30% of all ORFs are predicted to encode membrane proteins, with the larger genomes containing a higher fraction than the smaller ones. Although there is a general tendency that proteins with a smaller number of transmembrane segments are more prevalent than those with many, uni-cellular organisms appear to prefer proteins with 6 and 12 transmembrane segments, whereas Caenorhabditis elegans and Homo sapiens have a slight preference for proteins with seven transmembrane segments. In all organisms, there is a tendency that membrane proteins either have many transmembrane segments with short connecting loops or few transmembrane segments with large extra-membraneous domains. Membrane proteins from all organisms studied, except possibly the archaeon Methanococcus jannaschii, follow the so-called "positive-inside" rule; i.e., they tend to have a higher frequency of positively charged residues in cytoplasmic than in extra-cytoplasmic segments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Crystal structure and mechanism of a calcium-gated potassium channel.

            Ion channels exhibit two essential biophysical properties; that is, selective ion conduction, and the ability to gate-open in response to an appropriate stimulus. Two general categories of ion channel gating are defined by the initiating stimulus: ligand binding (neurotransmitter- or second-messenger-gated channels) or membrane voltage (voltage-gated channels). Here we present the structural basis of ligand gating in a K(+) channel that opens in response to intracellular Ca(2+). We have cloned, expressed, analysed electrical properties, and determined the crystal structure of a K(+) channel (MthK) from Methanobacterium thermoautotrophicum in the Ca(2+)-bound, opened state. Eight RCK domains (regulators of K(+) conductance) form a gating ring at the intracellular membrane surface. The gating ring uses the free energy of Ca(2+) binding in a simple manner to perform mechanical work to open the pore.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites.

              Identifying the location of ligand binding sites on a protein is of fundamental importance for a range of applications including molecular docking, de novo drug design and structural identification and comparison of functional sites. Here, we describe a new method of ligand binding site prediction called Q-SiteFinder. It uses the interaction energy between the protein and a simple van der Waals probe to locate energetically favourable binding sites. Energetically favourable probe sites are clustered according to their spatial proximity and clusters are then ranked according to the sum of interaction energies for sites within each cluster. There is at least one successful prediction in the top three predicted sites in 90% of proteins tested when using Q-SiteFinder. This success rate is higher than that of a commonly used pocket detection algorithm (Pocket-Finder) which uses geometric criteria. Additionally, Q-SiteFinder is twice as effective as Pocket-Finder in generating predicted sites that map accurately onto ligand coordinates. It also generates predicted sites with the lowest average volumes of the methods examined in this study. Unlike pocket detection, the volumes of the predicted sites appear to show relatively low dependence on protein volume and are similar in volume to the ligands they contain. Restricting the size of the pocket is important for reducing the search space required for docking and de novo drug design or site comparison. The method can be applied in structural genomics studies where protein binding sites remain uncharacterized since the 86% success rate for unbound proteins appears to be only slightly lower than that of ligand-bound proteins. Both Q-SiteFinder and Pocket-Finder have been made available online at http://www.bioinformatics.leeds.ac.uk/qsitefinder and http://www.bioinformatics.leeds.ac.uk/pocketfinder
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                July 2009
                July 2009
                17 July 2009
                : 5
                : 7
                : e1000440
                Affiliations
                [1]EMBL/EBI, The Wellcome Trust Genome Campus, Cambridge, United Kingdom
                Max-Planck-Institut für Informatik, Germany
                Author notes
                [¤]

                Current address: BIOQUANT, University of Heidelberg, Heidelberg, Germany.

                Conceived and designed the experiments: MP-C JMT. Performed the experiments: MP-C TM. Analyzed the data: MP-C TM. Wrote the paper: MP-C JMT. Supervised the work: JMT.

                Article
                08-PLCB-RA-1051R4
                10.1371/journal.pcbi.1000440
                2704872
                19609355
                a9262ea2-ce3a-43f7-a4d8-0d846c2851d6
                Pellegrini-Calace et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 18 November 2008
                : 17 June 2009
                Page count
                Pages: 16
                Categories
                Research Article
                Computational Biology/Macromolecular Structure Analysis

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article