8
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Disease-specific B cell epitopes for serum antibodies from patients with severe acute respiratory syndrome (SARS) and serologic detection of SARS antibodies by epitope-based peptide antigens

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Severe acute respiratory syndrome (SARS) has emerged as a highly contagious, sometimes fatal disease. To find disease-specific B cell epitopes, phage-displayed random peptide libraries were panned on serum immunoglobulin (Ig) G antibodies from patients with SARS. Forty-nine immunopositive phage clones that bound specifically to serum from patients with SARS were selected. These phageborne peptides had 4 consensus motifs, of which 2 corresponded to amino acid sequences reported for SARS-associated coronavirus (SARSCoV). Synthetic peptide binding and competitive-inhibition assays further confirmed that patients with SARS generated antibodies against SARS-CoV. Immunopositive phage clones and epitope-based peptide antigens demonstrated clinical diagnostic potential by reacting with serum from patients with SARS. Antibody-response kinetics were evaluated in 4 patients with SARS, and production of IgM, IgG, and IgA were documented as part of the immune response. In conclusion, B cell epitopes of SARS corresponded to novel coronavirus. Our epitope-based serologic test may be useful in laboratory detection of the virus and in further study of the pathogenesis of SARS.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome

          The severe acute respiratory syndrome (SARS) has recently been identified as a new clinical entity. SARS is thought to be caused by an unknown infectious agent. Clinical specimens from patients with SARS were searched for unknown viruses with the use of cell cultures and molecular techniques. A novel coronavirus was identified in patients with SARS. The virus was isolated in cell culture, and a sequence 300 nucleotides in length was obtained by a polymerase-chain-reaction (PCR)-based random-amplification procedure. Genetic characterization indicated that the virus is only distantly related to known coronaviruses (identical in 50 to 60 percent of the nucleotide sequence). On the basis of the obtained sequence, conventional and real-time PCR assays for specific and sensitive detection of the novel virus were established. Virus was detected in a variety of clinical specimens from patients with SARS but not in controls. High concentrations of viral RNA of up to 100 million molecules per milliliter were found in sputum. Viral RNA was also detected at extremely low concentrations in plasma during the acute phase and in feces during the late convalescent phase. Infected patients showed seroconversion on the Vero cells in which the virus was isolated. The novel coronavirus might have a role in causing SARS. Copyright 2003 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A novel coronavirus associated with severe acute respiratory syndrome.

            A worldwide outbreak of severe acute respiratory syndrome (SARS) has been associated with exposures originating from a single ill health care worker from Guangdong Province, China. We conducted studies to identify the etiologic agent of this outbreak. We received clinical specimens from patients in seven countries and tested them, using virus-isolation techniques, electron-microscopical and histologic studies, and molecular and serologic assays, in an attempt to identify a wide range of potential pathogens. None of the previously described respiratory pathogens were consistently identified. However, a novel coronavirus was isolated from patients who met the case definition of SARS. Cytopathological features were noted in Vero E6 cells inoculated with a throat-swab specimen. Electron-microscopical examination revealed ultrastructural features characteristic of coronaviruses. Immunohistochemical and immunofluorescence staining revealed reactivity with group I coronavirus polyclonal antibodies. Consensus coronavirus primers designed to amplify a fragment of the polymerase gene by reverse transcription-polymerase chain reaction (RT-PCR) were used to obtain a sequence that clearly identified the isolate as a unique coronavirus only distantly related to previously sequenced coronaviruses. With specific diagnostic RT-PCR primers we identified several identical nucleotide sequences in 12 patients from several locations, a finding consistent with a point-source outbreak. Indirect fluorescence antibody tests and enzyme-linked immunosorbent assays made with the new isolate have been used to demonstrate a virus-specific serologic response. This virus may never before have circulated in the U.S. population. A novel coronavirus is associated with this outbreak, and the evidence indicates that this virus has an etiologic role in SARS. Because of the death of Dr. Carlo Urbani, we propose that our first isolate be named the Urbani strain of SARS-associated coronavirus. Copyright 2003 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterization of a novel coronavirus associated with severe acute respiratory syndrome.

              P Rota (2003)
              In March 2003, a novel coronavirus (SARS-CoV) was discovered in association with cases of severe acute respiratory syndrome (SARS). The sequence of the complete genome of SARS-CoV was determined, and the initial characterization of the viral genome is presented in this report. The genome of SARS-CoV is 29,727 nucleotides in length and has 11 open reading frames, and its genome organization is similar to that of other coronaviruses. Phylogenetic analyses and sequence comparisons showed that SARS-CoV is not closely related to any of the previously characterized coronaviruses.
                Bookmark

                Author and article information

                Journal
                J Infect Dis
                J. Infect. Dis
                jinfdis
                jid
                The Journal of Infectious Diseases
                The University of Chicago Press
                0022-1899
                1537-6613
                15 August 2004
                15 August 2004
                15 August 2004
                : 190
                : 4
                : 797-809
                Affiliations
                [1 ] Graduate Institute of Oral Biology, College of Medicine, National Taiwan University Taipei, Taiwan
                [2 ] Department of Laboratory Medicine and Internal Medicine, College of Medicine, National Taiwan University Taipei, Taiwan
                [3 ] Department of Pathology, College of Medicine, National Taiwan University Taipei, Taiwan
                [4 ] School and Graduate Institute of Medical Technology, College of Medicine, National Taiwan University Taipei, Taiwan
                Author notes

                Presented in part: Patent filing number 92112741, Taiwan, 9 May 2003.

                Financial support: National Science Council (NSC), Taiwan (grants NSC 91-2314- B-002-257 and NSC 92SARS01-07 to H.-C.W.).

                Reprints or correspondence: Dr. Han-Chung Wu, Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, 1 Chang-Te St., Taipei 100, Taiwan ( hcw0928@ 123456ha.mc.nut.edu.tw ).
                Article
                10.1086/422753
                7109815
                15272409
                a92ba181-81fd-46a0-9526-dcee6aa46e19
                © 2004 by the Infectious Diseases Society of America

                This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.

                History
                : 23 May 2003
                : 15 March 2004
                Categories
                Major Articles and Brief Reports
                Viruses
                Major Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article