19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Laterality and Flight: Concurrent Tests of Side-Bias and Optimality in Flying Tree Swallows

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Behavioural side-bias occurs in many vertebrates, including birds as a result of hemispheric specialization and can be advantageous by improving response times to sudden stimuli and efficiency in multi-tasking. However, behavioural side-bias can lead to morphological asymmetries resulting in reduced performance for specific activities. For flying animals, wing asymmetry is particularly costly and it is unclear if behavioural side-biases will be expressed in flight; the benefits of quick response time afforded by side-biases must be balanced against the costs of less efficient flight due to the morphological asymmetry side-biases may incur. Thus, competing constraints could lead to context-dependent expression or suppression of side-bias in flight. In repeated flight trials through an outdoor tunnel with obstacles, tree swallows ( Tachycineta bicolor) preferred larger openings, but we did not detect either individual or population-level side-biases. Thus, while observed behavioural side-biases during substrate-foraging and copulation are common in birds, we did not see such side-bias expressed in obstacle avoidance behaviour in flight. This finding highlights the importance of behavioural context for investigations of side-bias and hemispheric laterality and suggests both proximate and ultimate trade-offs between species-specific cognitive ecology and flight biomechanics.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization.

          Recent evidence in natural and semi-natural settings has revealed a variety of left-right perceptual asymmetries among vertebrates. These include preferential use of the left or right visual hemifield during activities such as searching for food, agonistic responses, or escape from predators in animals as different as fish, amphibians, reptiles, birds, and mammals. There are obvious disadvantages in showing such directional asymmetries because relevant stimuli may be located to the animal's left or right at random; there is no a priori association between the meaning of a stimulus (e.g., its being a predator or a food item) and its being located to the animal's left or right. Moreover, other organisms (e.g., predators) could exploit the predictability of behavior that arises from population-level lateral biases. It might be argued that lateralization of function enhances cognitive capacity and efficiency of the brain, thus counteracting the ecological disadvantages of lateral biases in behavior. However, such an increase in brain efficiency could be obtained by each individual being lateralized without any need to align the direction of the asymmetry in the majority of the individuals of the population. Here we argue that the alignment of the direction of behavioral asymmetries at the population level arises as an "evolutionarily stable strategy" under "social" pressures occurring when individually asymmetrical organisms must coordinate their behavior with the behavior of other asymmetrical organisms of the same or different species.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Evolutionary Biology of Animal Cognition

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evolution of hemispheric specialization: advantages and disadvantages.

              Lateralization of the brain appeared early in evolution and many of its features appear to have been retained, possibly even in humans. We now have a considerable amount of information on the different forms of lateralization in a number of species, and the commonalities of these are discussed, but there has been relatively little investigation of the advantages of being lateralized. This article reports new findings on the differences between lateralized and nonlateralized chicks. The lateralized chicks were exposed to light for 24 h on day 19 of incubation, a treatment known to lead to lateralization of a number of visually guided responses, and the nonlateralized chicks were incubated in the dark. When they were feeding, the lateralized chicks were found to detect a stimulus resembling a raptor with shorter latency than nonlateralized chicks. This difference was not a nonspecific effect caused by the light-exposed chicks being more distressed by the stimulus. Instead, it appears to be a genuine advantage conferred by having a lateralized brain. It is suggested that having a lateralized brain allows dual attention to the tasks of feeding (right eye and left hemisphere) and vigilance for predators (left eye and right hemisphere). Nonlateralized chicks appear to perform these dual tasks less efficiently than lateralized ones. Reference is made to other species in discussing these results. Copyright 2000 Academic Press.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2008
                12 March 2008
                : 3
                : 3
                : e1748
                Affiliations
                [1 ]Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America
                [2 ]Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States of America
                Smithsonian Institution, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: jtm39@ 123456cornell.edu

                Conceived and designed the experiments: DW JM JR DC. Performed the experiments: JM JR DC. Analyzed the data: JM JR DC. Contributed reagents/materials/analysis tools: DW. Wrote the paper: DW JM JR DC.

                [¤]

                Current address: Institute of Biology, University of Southern Denmark, Odense, Denmark

                Article
                07-PONE-RA-02320R2
                10.1371/journal.pone.0001748
                2254502
                18335028
                a92d2251-a369-44a0-a6bd-7d3594694447
                Mandel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 25 September 2007
                : 4 February 2008
                Page count
                Pages: 5
                Categories
                Research Article
                Ecology
                Ecology/Behavioral Ecology
                Ecology/Evolutionary Ecology
                Ecology/Physiological Ecology
                Neuroscience/Animal Cognition
                Neuroscience/Behavioral Neuroscience

                Uncategorized
                Uncategorized

                Comments

                Comment on this article