38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Improving team-sport player’s physical performance with altitude training: from beliefs to scientific evidence

      editorial

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In 1973, Sir Roger Bannister said that no clear proof of benefit of altitude training had emerged during a panel discussion on this topic, published in BJSM.1 What have we learnt in the intervening 40 years? Altitude training—what use in team sports? To date, most altitude training research is oriented towards individual endurance athletes, while the potential benefits for team sports remain largely unexplored. Hence, the safety and equality aspects of competitive football matches held above 2500 m have been passionately debated for over two decades.2 In 1993 this debate was invigorated when Brazil lost its first qualification game for a World championship in the stadium of La Paz (Bolivia), located at an altitude of ∼3600 m. Undoubtedly, the altered environment at altitude had a significant impact on players physical performances,3 and some athletes were better able to cope with the change in altitude than others, especially those who were better acclimated.4 Recently, the fact that Argentina suffered their worst loss in 60 years, a sound defeat of 6-1 against host Bolivia in a South Africa World Cup qualifier, clearly demonstrates that playing international games at altitude is a major challenge. Despite the apparent lack of strong scientific evidence, it is striking to observe that altitude-training centres have been established around the globe, and are now offering team sport players the opportunity to train under sport-specific hypoxic conditions. Girard et al 5 have shown how sprinting and small-sided games can be performed inside inflatable hypoxic marquees. Today, concepts regarding the use of hypoxic methods for team sport players are evolving.6 Owing to the widespread belief that altitude training confers a competitive advantage, this topic has an unprecedented popularity in the team sport community. This issue In this themed issue, Aspetar (Qatar Orthopaedic and Sports medicine Hospital) partners with BJSM to provide the journal's readership with a representation of the current research into altitude training and team sports. As the chair of the scientific committee of the Altitude Training and Team Sports Conference, I am proud to be guest editing this issue, in which we present current updates and original investigations authored by international experts in this bourgeoning field. Current updates The current updates section starts with a comprehensive summary of the factors that affect either sprint performance or the ability to recover from maximal or near-maximal efforts at sea level, and discusses the evidence that these may be improved by altitude training.7 Billaut and Aughey8 then illustrate the adverse effects of acute altitude exposure on single-sprint and repeated-sprint capacity. The authors conclude that players displaying enhanced muscle reoxygenation capacity, greater buffering power and maintained cerebral oxygenation should better cope with the stress of altitude. Changes in haemoglobin mass reflect major systemic adaptations. Saunders et al 9 postulate that an ∼1% increase in haemoglobin mass results in a 0.6–0.7% increase in maximal oxygen uptake in most elite endurance athletes after various forms of altitude training. Gore et al 10 present a meta-analysis (17 studies) of papers having used the carbon monoxide rebreathing technique to determine haemoglobin mass. A key feature of their review is their demonstration that classical altitude training camps as short as 2 weeks are likely to increase haemoglobin mass and benefit most athletes. Chapman11 explains the importance of screening arterial oxyhaemoglobin saturation and hypoxic ventilatory responses in order to determine how team members might individually respond to hypoxic conditions. Readers are provided with overwhelming evidence promoting the individualisation of adjustments in exercise intensity and/or duration at altitude. Faiss et al 12 critically analyse the results of studies involving high-intensity exercise performed in hypoxia for sea-level performance enhancements, by differentiating intermittent hypoxic training and repeated sprint training in hypoxia. Original investigations The first set of original investigations deals with the various aspects of altitude exposure in three different team sports. First, McLean et al 13 show that two consecutive preseason moderate altitude camps yield a similar (4%) increase in haemoglobin mass in elite Australian footballers, while they do not change their haemoglobin mass consistently from year to year. Buchheit et al 14 demonstrate that, compared with training in the heat-only, an additional hypoxic stimulus during sleep and particular training sessions has no high-intensity running performance benefit, immediately after a 14-day off-season camp in professional Australia football players. In a group of rugby players, Harvey et al 15 report that 12 repeated-sprint training sessions in hypoxia resulted in a twofold greater improvements in the capacity to perform repeated high-intensity aerobic work than equivalent normoxic training. Finally, Garvican-Lewis et al 16 highlight that 10 days of simulated ‘living high-training low’ altitude training increases oxygen transport capacity in elite female water polo players by 3–4%, which is strongly related to specific aerobic fitness. In the final set of papers of the supplement,17–21 the International Study on Football at Altitude 3600 m (IFA3600) is presented with the intention of documenting, first, the extent to which running performance is altered at 3600 m as compared with sea-level and, second, the time-course of acclimatisation of both physical performance and the underlying physiological adaptations associated with training and playing at 3600 m (sea-level native players) and at low altitude (high altitude-adapted players). Specifically, of a series of seven companion papers attempting to quantify the acute and chronic effects of competing at La Paz, Bolivia (3600 m) on game and training running performance, acclimatisation, haematology and sleeping patterns of national-level junior players, five are published in this supplement. The two remaining papers can be found in a regular issue of BJSM.21 22 Finally, the culminating point of this supplement is perhaps the position statement featuring scientifically based strategies that may be of importance to consider when intending to implement altitude training with team sport players.23 What are the new findings? Forty years after the publication of the initial altitude training issue in this journal,1 major advances have been made from a performance and mechanistic perspective. The three main points are The current level of evidence for the efficacy of hypoxic methods to improve exercise performance at moderate or high altitude (acclimatisation) is well established. However, the benefits of using a ‘living high-training low’, ‘Living high-training high’ and ‘living low-training high’ altitude-training intervention or a combination of those methods to improve team sport-related physical performance on return to sea level are not as definitive. Training camps as short as 2 weeks can increase haemoglobin mass substantially in a range of professional team sport players, while limited data currently exists regarding the time course of non-haematological adaptations. It is undeniable that no single recommendation is likely suitable for all players in a team, or across all team sports, requiring the development of optimised interventions at the individual player level. Finally, the physiology underlying altitude-related effects on physical performance in many team sports is still far from fully understood.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Advancing hypoxic training in team sports: from intermittent hypoxic training to repeated sprint training in hypoxia

          Over the past two decades, intermittent hypoxic training (IHT), that is, a method where athletes live at or near sea level but train under hypoxic conditions, has gained unprecedented popularity. By adding the stress of hypoxia during ‘aerobic’ or ‘anaerobic’ interval training, it is believed that IHT would potentiate greater performance improvements compared to similar training at sea level. A thorough analysis of studies including IHT, however, leads to strikingly poor benefits for sea-level performance improvement, compared to the same training method performed in normoxia. Despite the positive molecular adaptations observed after various IHT modalities, the characteristics of optimal training stimulus in hypoxia are still unclear and their functional translation in terms of whole-body performance enhancement is minimal. To overcome some of the inherent limitations of IHT (lower training stimulus due to hypoxia), recent studies have successfully investigated a new training method based on the repetition of short (<30 s) ‘all-out’ sprints with incomplete recoveries in hypoxia, the so-called repeated sprint training in hypoxia (RSH). The aims of the present review are therefore threefold: first, to summarise the main mechanisms for interval training and repeated sprint training in normoxia. Second, to critically analyse the results of the studies involving high-intensity exercises performed in hypoxia for sea-level performance enhancement by differentiating IHT and RSH. Third, to discuss the potential mechanisms underpinning the effectiveness of those methods, and their inherent limitations, along with the new research avenues surrounding this topic.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Altitude training and haemoglobin mass from the optimised carbon monoxide rebreathing method determined by a meta-analysis

            Objective To characterise the time course of changes in haemoglobin mass (Hbmass) in response to altitude exposure. Methods This meta-analysis uses raw data from 17 studies that used carbon monoxide rebreathing to determine Hbmass prealtitude, during altitude and postaltitude. Seven studies were classic altitude training, eight were live high train low (LHTL) and two mixed classic and LHTL. Separate linear-mixed models were fitted to the data from the 17 studies and the resultant estimates of the effects of altitude used in a random effects meta-analysis to obtain an overall estimate of the effect of altitude, with separate analyses during altitude and postaltitude. In addition, within-subject differences from the prealtitude phase for altitude participant and all the data on control participants were used to estimate the analytical SD. The ‘true’ between-subject response to altitude was estimated from the within-subject differences on altitude participants, between the prealtitude and during-altitude phases, together with the estimated analytical SD. Results During-altitude Hbmass was estimated to increase by ∼1.1%/100 h for LHTL and classic altitude. Postaltitude Hbmass was estimated to be 3.3% higher than prealtitude values for up to 20 days. The within-subject SD was constant at ∼2% for up to 7 days between observations, indicative of analytical error. A 95% prediction interval for the ‘true’ response of an athlete exposed to 300 h of altitude was estimated to be 1.1–6%. Conclusions Camps as short as 2 weeks of classic and LHTL altitude will quite likely increase Hbmass and most athletes can expect benefit.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Repeated sprint training in normobaric hypoxia

              Repeated sprint ability (RSA) is a critical success factor for intermittent sport performance. Repeated sprint training has been shown to improve RSA, we hypothesised that hypoxia would augment these training adaptations. Thirty male well-trained academy rugby union and rugby league players (18.4±1.5 years, 1.83±0.07 m, 88.1±8.9 kg) participated in this single-blind repeated sprint training study. Participants completed 12 sessions of repeated sprint training (10×6 s, 30 s recovery) over 4 weeks in either hypoxia (13% FiO2) or normoxia (21% FiO2). Pretraining and post-training, participants completed sports specific endurance and sprint field tests and a 10×6 s RSA test on a non-motorised treadmill while measuring speed, heart rate, capillary blood lactate, muscle and cerebral deoxygenation and respiratory measures. Yo-Yo Intermittent Recovery Level 1 test performance improved after RS training in both groups, but gains were significantly greater in the hypoxic (33±12%) than the normoxic group (14±10%, p<0.05). During the 10×6 s RS test there was a tendency for greater increases in oxygen consumption in the hypoxic group (hypoxic 6.9±9%, normoxic (−0.3±8.8%, p=0.06) and reductions in cerebral deoxygenation (% changes for both groups, p=0.09) after hypoxic than normoxic training. Twelve RS training sessions in hypoxia resulted in twofold greater improvements in capacity to perform repeated aerobic high intensity workout than an equivalent normoxic training. Performance gains are evident in the short term (4 weeks), a period similar to a preseason training block.
                Bookmark

                Author and article information

                Journal
                Br J Sports Med
                Br J Sports Med
                bjsports
                bjsm
                British Journal of Sports Medicine
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                0306-3674
                1473-0480
                December 2013
                : 47
                : Suppl 1 , Altitude Training and Team Sports
                : i2-i3
                Affiliations
                [1 ]Research and Education Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital , Doha, Qatar
                [2 ]Sports Medicine Centre Papendal , Arnhem, The Netherlands
                Author notes
                [Correspondence to ] Dr Olivier Girard, Research and Education Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, PO Box 29222, Doha, Qatar; oliv.girard@ 123456gmail.com
                Article
                bjsports-2013-093119
                10.1136/bjsports-2013-093119
                3903311
                24282201
                a931d23c-656c-4bd2-8024-6b03132cb47a
                Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions

                This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

                History
                : 9 October 2013
                Categories
                1506
                Editorial
                Custom metadata
                unlocked

                Sports medicine
                altitude,mountains,physiology,soccer,training
                Sports medicine
                altitude, mountains, physiology, soccer, training

                Comments

                Comment on this article