6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Higher level relationships of leeches (Annelida: Clitellata: Euhirudinea) based on morphology and gene sequences.

      Molecular Phylogenetics and Evolution
      Animals, Cell Nucleus, genetics, DNA, chemistry, DNA, Mitochondrial, Electron Transport Complex IV, Leeches, anatomy & histology, classification, Molecular Sequence Data, Phylogeny, RNA, Ribosomal, 18S, Sequence Alignment, Sequence Analysis, DNA

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The evolutionary patterns of divergence of seven euhirudinean families were investigated by cladistic analysis of 33 euhirudinean species. Oligochaetes, Acanthobdella peledina, and branchiobdellidans were included as outgroup taxa. Cladistic analysis employed 1.8 kb of nuclear 18S ribosomal DNA and 651 bp of mitochondrial cytochrome c oxidase subunit I in addition to morphological data. The use of two molecular data sets, one nuclear gene and one mitochondrial gene, as well as morphological data combined historical information evolving under a variety of different constraints and therefore was less susceptible to the biases that could confound the use of only one type of data. Results suggest that the nuclear 18S rDNA gene yields a meaningful historical signal for determining higher level relationships. The more rapidly evolving CO-I gene was informative for recent or local areas of the evolutionary hypothesis, such as within-family relationships. Analyses combining all data from the three character sets yielded one most-parsimonious tree. Most of the higher taxa in recent leech systematics were well corroborated in the resulting topology. However, these results suggested paraphyly of the order Rhynchobdellida, which contradicts the presence of a proboscis as a synapomorphy. The medicinal leech family Hirudinidae was polyphyletic because Haemadipsidae and Haemopidae each have a hirudinid ancestor. In addition, all but one of the genera within the family Erpobdellidae must be either abandoned or renamed. Unusual findings included compelling evidence of historical plasticity in bloodfeeding behavior, having been lost at least four times in the course of euhirudinean evolution. Biogeographic patterns supported a New World origin for Arhynchobdellida. Copyright 1999 Academic Press.

          Related collections

          Author and article information

          Comments

          Comment on this article