22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Relationship between Gene Body DNA Methylation and Intragenic H3K9me3 and H3K36me3 Chromatin Marks

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To elucidate the relationship between intragenic DNA methylation and chromatin marks, we performed epigenetic profiling of chromosome 19 in human bronchial epithelial cells (HBEC) and in the colorectal cancer cell line HCT116 as well as its counterpart with double knockout of DNMT1 and DNMT3B (HCT116-DKO). Analysis of H3K36me3 profiles indicated that this intragenic mark of active genes is associated with two categories of genes: (i) genes with low CpG density and H3K9me3 in the gene body or (ii) genes with high CpG density and DNA methylation in the gene body. We observed that a combination of low CpG density in gene bodies together with H3K9me3 and H3K36me3 occupancy is a specific epigenetic feature of zinc finger (ZNF) genes, which comprise 90% of all genes carrying both histone marks on chromosome 19. For genes with high intragenic CpG density, transcription and H3K36me3 occupancy were not changed in conditions of partial or intensive loss of DNA methylation in gene bodies. siRNA knockdown of SETD2, the major histone methyltransferase responsible for production of H3K36me3, did not reduce DNA methylation in gene bodies. Our study suggests that the H3K36me3 and DNA methylation marks in gene bodies are established largely independently of each other and points to similar functional roles of intragenic DNA methylation and intragenic H3K9me3 for CpG-rich and CpG-poor genes, respectively.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          DAVID: Database for Annotation, Visualization, and Integrated Discovery.

          Functional annotation of differentially expressed genes is a necessary and critical step in the analysis of microarray data. The distributed nature of biological knowledge frequently requires researchers to navigate through numerous web-accessible databases gathering information one gene at a time. A more judicious approach is to provide query-based access to an integrated database that disseminates biologically rich information across large datasets and displays graphic summaries of functional information. Database for Annotation, Visualization, and Integrated Discovery (DAVID; http://www.david.niaid.nih.gov) addresses this need via four web-based analysis modules: 1) Annotation Tool - rapidly appends descriptive data from several public databases to lists of genes; 2) GoCharts - assigns genes to Gene Ontology functional categories based on user selected classifications and term specificity level; 3) KeggCharts - assigns genes to KEGG metabolic processes and enables users to view genes in the context of biochemical pathway maps; and 4) DomainCharts - groups genes according to PFAM conserved protein domains. Analysis results and graphical displays remain dynamically linked to primary data and external data repositories, thereby furnishing in-depth as well as broad-based data coverage. The functionality provided by DAVID accelerates the analysis of genome-scale datasets by facilitating the transition from data collection to biological meaning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain.

            Heterochromatin protein 1 (HP1) is localized at heterochromatin sites where it mediates gene silencing. The chromo domain of HP1 is necessary for both targeting and transcriptional repression. In the fission yeast Schizosaccharomyces pombe, the correct localization of Swi6 (the HP1 equivalent) depends on Clr4, a homologue of the mammalian SUV39H1 histone methylase. Both Clr4 and SUV39H1 methylate specifically lysine 9 of histone H3 (ref. 6). Here we show that HP1 can bind with high affinity to histone H3 methylated at lysine 9 but not at lysine 4. The chromo domain of HP1 is identified as its methyl-lysine-binding domain. A point mutation in the chromo domain, which destroys the gene silencing activity of HP1 in Drosophila, abolishes methyl-lysine-binding activity. Genetic and biochemical analysis in S. pombe shows that the methylase activity of Clr4 is necessary for the correct localization of Swi6 at centromeric heterochromatin and for gene silencing. These results provide a stepwise model for the formation of a transcriptionally silent heterochromatin: SUV39H1 places a 'methyl marker' on histone H3, which is then recognized by HP1 through its chromo domain. This model may also explain the stable inheritance of the heterochromatic state.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Distinct epigenomic landscapes of pluripotent and lineage-committed human cells.

              Human embryonic stem cells (hESCs) share an identical genome with lineage-committed cells, yet possess the remarkable properties of self-renewal and pluripotency. The diverse cellular properties in different cells have been attributed to their distinct epigenomes, but how much epigenomes differ remains unclear. Here, we report that epigenomic landscapes in hESCs and lineage-committed cells are drastically different. By comparing the chromatin-modification profiles and DNA methylomes in hESCs and primary fibroblasts, we find that nearly one-third of the genome differs in chromatin structure. Most changes arise from dramatic redistributions of repressive H3K9me3 and H3K27me3 marks, which form blocks that significantly expand in fibroblasts. A large number of potential regulatory sequences also exhibit a high degree of dynamics in chromatin modifications and DNA methylation. Additionally, we observe novel, context-dependent relationships between DNA methylation and chromatin modifications. Our results provide new insights into epigenetic mechanisms underlying properties of pluripotency and cell fate commitment.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                19 April 2011
                : 6
                : 4
                : e18844
                Affiliations
                [1 ]Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
                [2 ]Department of Molecular Medicine, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
                [3 ]Department of Information Sciences, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
                CNRS, France
                Author notes

                Conceived and designed the experiments: MAH GPP. Performed the experiments: MAH. Analyzed the data: MAH XW AXL TH GPP. Contributed reagents/materials/analysis tools: XW AXL. Wrote the paper: MAH XW GPP.

                Article
                PONE-D-10-06513
                10.1371/journal.pone.0018844
                3079728
                21526191
                a9356f60-ee22-4946-ad66-3008775dc9aa
                Hahn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 8 December 2010
                : 10 March 2011
                Page count
                Pages: 12
                Categories
                Research Article
                Biology
                Genetics
                Epigenetics
                DNA modification
                Histone Modification
                Chromatin
                Molecular Genetics
                Gene Regulation
                Molecular Cell Biology
                Chromosome Biology
                Chromatin
                Gene Expression
                Chromatin

                Uncategorized
                Uncategorized

                Comments

                Comment on this article