13
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of 11β-HSD type 1 in abnormal HPA axis activity during immune-mediated arthritis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Patients with chronic immune-mediated arthritis exhibit abnormal hypothalamo-pituitary-adrenal (HPA) axis activity. The basis for this abnormality is not known. Immune-mediated arthritis is associated with increased extra-adrenal synthesis of active glucocorticoids by the 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme. 11β-HSD1 is expressed in the central nervous system, including regions involved in HPA axis regulation. We examined whether altered 11β-HSD1 expression within these regions contributes to HPA axis dysregulation during arthritis. The expression of 11β-HSD1, and other components of glucocorticoid signaling, were examined in various brain regions and the pituitary gland of mice with experimentally induced arthritis. Two arthritis protocols were employed: The K/BxN spontaneous arthritis model for chronic arthritis and the K/BxN serum transfer arthritis model for acute arthritis. 11β-HSD1 mRNA ( Hsd11b1) was expressed in the hippocampus, hypothalamus, cortex, cerebellum and pituitary gland. Hypothalamic Hsd11b1 expression did not change in response to arthritis in either model. Pituitary Hsd11b1 expression was however significantly increased in both chronic and acute arthritis models. Hippocampal Hsd11b1 was decreased in acute but not chronic arthritis. Chronic, but not acute, arthritis was associated with a reduction in hypothalamic corticotropin-releasing hormone and arginine vasopressin expression. In both models, serum adrenocorticotropic hormone and corticosterone levels were no different from non-inflammatory controls. These findings demonstrate inflammation-dependent regulation of Hsd11b1 expression in the pituitary gland and hippocampus. The upregulation of 11β-HSD1 expression in the pituitary during both chronic and acute arthritis, and thus, an increase in glucocorticoid negative feedback, could contribute to the abnormalities in HPA axis activity seen in immune-mediated arthritis.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis.

          There is considerable, although not entirely consistent, evidence that the hippocampus inhibits most aspects of HPA activity, including basal (circadian nadir) and circadian peak secretion as well as the onset and termination of responses to stress. Although much of the evidence for these effects rests only on the measurement of corticosteroids, recent lesion and implant studies indicate that the hippocampus regulates adrenocortical activity at the hypothalamic level, via the expression and secretion of ACTH secretagogues. Such inhibition results largely from the mediation of corticosteroid feedback, although more work is required to determine whether the hippocampus supplies a tonic inhibitory input in the absence of corticosteroids. It must be noted that the hippocampus is not the only feedback site in the adrenocortical system, since removal of its input only reduces, but does not abolish, the efficacy of corticosteroid inhibition, and since other elements of the axis appear eventually to compensate for deficits in feedback regulation. The importance of other feedback sites is further suggested not only by the presence of corticosteroid receptors in other parts of the brain and pituitary, but also by the improved prediction of CRF levels by combined hypothalamic and hippocampal receptor occupancy. The likelihood of feedback mediated by nonhippocampal sites underscores the need for future work to characterize hippocampal influence on HPA activity in the absence of changes in corticosteroid secretion. However, despite the fact that the hippocampus is not the only feedback site, it is distinguished from most potential feedback sites, including the hypothalamus and pituitary, by its high content of both type I and II corticosteroid receptors. The hippocampus is therefore capable of mediating inhibition over a wide range of steroid levels. The low end of this range is represented by corticosteroid inhibition of basal (circadian nadir) HPA activity. The apparent type I receptor specificity of this inhibition and the elevation of trough corticosteroid levels after hippocampal damage support a role for hippocampal type I receptors in regulating basal HPA activity. It is possible that basal activity is controlled in part through hippocampal inhibition of vasopressin, since the inhibition of portal blood vasopressin correlates with lower levels of hippocampal receptor occupancy, and the expression of vasopressin by some CRF neurons is sensitive to very low corticosteroid levels. At the high end of the physiological range, stress-induced or circadian peak corticosteroid secretion correlates strongly with occupancy of the lower affinity hippocampal type II receptors.(ABSTRACT TRUNCATED AT 400 WORDS)
            • Record: found
            • Abstract: found
            • Article: not found

            Organ-specific disease provoked by systemic autoimmunity.

            Rheumatoid arthritis (RA) is a chronic joint disease characterized by leukocyte invasion and synoviocyte activation followed by cartilage and bone destruction. Its etiology and pathogenesis are poorly understood. We describe a spontaneous mouse model of this syndrome, generated fortuitously by crossing a T cell receptor (TCR) transgenic line with the NOD strain. All offspring develop a joint disease highly reminiscent of RA in man. The trigger for the murine disorder is chance recognition of a NOD-derived major histocompatibility complex (MHC) class II molecule by the transgenic TCR; progression to arthritis involves CD4+ T, B, and probably myeloid cells. Thus, a joint-specific disease need not arise from response to a joint-specific antigen but can be precipitated by a breakdown in general mechanisms of self-tolerance resulting in systemic self-reactivity. We suggest that human RA develops by an analogous mechanism.
              • Record: found
              • Abstract: found
              • Article: not found

              From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins.

              Rheumatoid arthritis is a common and debilitating autoimmune disease whose cause and mechanism remain a mystery. We recently described a T cell receptor transgenic mouse model that spontaneously develops a disease with most of the clinical, histological, and immunological features of rheumatoid arthritis in humans. Disease development in K/BxN mice is initiated by systemic T cell self-reactivity; it requires T cells, as expected, but B cells are also needed, more surprisingly. Here, we have identified the role of B cells as the secretion of arthritogenic immunoglobulins. We suggest that a similar scenario may unfold in some other arthritis models and in human patients, beginning with pervasive T cell autoreactivity and ending in immunoglobulin-provoked joint destruction.

                Author and article information

                Journal
                Endocr Connect
                Endocr Connect
                EC
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                2049-3614
                February 2018
                31 January 2018
                : 7
                : 2
                : 385-394
                Affiliations
                [1 ]Adrenal Steroid Group ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
                [2 ]Department of Rheumatology and Clinical Immunology Charité-University Medicine, Berlin, Germany
                [3 ]Bone Research Program ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
                [4 ]Concord Clinical School The University of Sydney, Sydney, Australia
                [5 ]Key Laboratory for Space Bioscience and Biotechnology Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Shaanxi, China
                [6 ]Department of Endocrinology & Metabolism Concord Hospital, Sydney, Australia
                Author notes
                Correspondence should be addressed to M S Cooper: mark.cooper@ 123456sydney.edu.au
                Article
                EC170361
                10.1530/EC-17-0361
                5825927
                29386227
                a938498f-3c22-4d3a-8f87-75c4be474c4d
                © 2018 The authors

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

                History
                : 25 January 2018
                : 31 January 2018
                Categories
                Research

                11β-hydroxysteroid dehydrogenase type 1,11β-hsd1,pituitary,hpa axis,rheumatoid arthritis

                Comments

                Comment on this article

                Related Documents Log