• Record: found
  • Abstract: found
  • Article: not found

Statistical significance for genomewide studies.

Proceedings of the National Academy of Sciences of the United States of America

Algorithms, Transcription, Genetic, Statistics as Topic, methods, Oligonucleotide Array Sequence Analysis, Humans, Genome, Genetic Techniques, Genetic Linkage, Gene Expression Regulation, Exons, Binding Sites, Animals, Alternative Splicing

Read this article at

      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


      With the increase in genomewide experiments and the sequencing of multiple genomes, the analysis of large data sets has become commonplace in biology. It is often the case that thousands of features in a genomewide data set are tested against some null hypothesis, where a number of features are expected to be significant. Here we propose an approach to measuring statistical significance in these genomewide studies based on the concept of the false discovery rate. This approach offers a sensible balance between the number of true and false positives that is automatically calibrated and easily interpreted. In doing so, a measure of statistical significance called the q value is associated with each tested feature. The q value is similar to the well known p value, except it is a measure of significance in terms of the false discovery rate rather than the false positive rate. Our approach avoids a flood of false positive results, while offering a more liberal criterion than what has been used in genome scans for linkage.

      Related collections

      Author and article information



      Comment on this article