38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Machine Learning and Deep Learning Approaches for Brain Disease Diagnosis: Principles and Recent Advances

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references185

          • Record: found
          • Abstract: not found
          • Article: not found

          Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI)

            • Record: found
            • Abstract: found
            • Article: not found

            Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults.

            The Open Access Series of Imaging Studies is a series of magnetic resonance imaging data sets that is publicly available for study and analysis. The initial data set consists of a cross-sectional collection of 416 subjects aged 18 to 96 years. One hundred of the included subjects older than 60 years have been clinically diagnosed with very mild to moderate Alzheimer's disease. The subjects are all right-handed and include both men and women. For each subject, three or four individual T1-weighted magnetic resonance imaging scans obtained in single imaging sessions are included. Multiple within-session acquisitions provide extremely high contrast-to-noise ratio, making the data amenable to a wide range of analytic approaches including automated computational analysis. Additionally, a reliability data set is included containing 20 subjects without dementia imaged on a subsequent visit within 90 days of their initial session. Automated calculation of whole-brain volume and estimated total intracranial volume are presented to demonstrate use of the data for measuring differences associated with normal aging and Alzheimer's disease.
              • Record: found
              • Abstract: found
              • Article: not found

              A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI

              Recently, artificial intelligence and machine learning in general have demonstrated remarkable performances in many tasks, from image processing to natural language processing, especially with the advent of deep learning (DL). Along with research progress, they have encroached upon many different fields and disciplines. Some of them require high level of accountability and thus transparency, for example, the medical sector. Explanations for machine decisions and predictions are thus needed to justify their reliability. This requires greater interpretability, which often means we need to understand the mechanism underlying the algorithms. Unfortunately, the blackbox nature of the DL is still unresolved, and many machine decisions are still poorly understood. We provide a review on interpretabilities suggested by different research works and categorize them. The different categories show different dimensions in interpretability research, from approaches that provide "obviously" interpretable information to the studies of complex patterns. By applying the same categorization to interpretability in medical research, it is hoped that: 1) clinicians and practitioners can subsequently approach these methods with caution; 2) insight into interpretability will be born with more considerations for medical practices; and 3) initiatives to push forward data-based, mathematically grounded, and technically grounded medical education are encouraged.

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                IEEE Access
                IEEE Access
                Institute of Electrical and Electronics Engineers (IEEE)
                2169-3536
                2021
                2021
                : 9
                : 37622-37655
                Article
                10.1109/ACCESS.2021.3062484
                a952e8af-977a-4f82-85aa-0ae86167c607
                © 2021

                https://creativecommons.org/licenses/by/4.0/legalcode

                History

                Comments

                Comment on this article

                Related Documents Log