36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Soluble CTLA-4 Splice Variant Protects From Type 1 Diabetes and Potentiates Regulatory T-Cell Function

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE

          CTLA4 gene variation associates with multiple autoimmune disorders, including type 1 diabetes. The CTLA4 susceptibility allele was found to generate decreased levels of mRNA encoding soluble CTLA-4 (sCTLA-4) relative to the full-length isoform, the functional consequence of which is as yet unknown. In this study, we investigated the contribution of sCTLA-4 to immune regulation with the aim to elucidate the functional basis of the disease association of CTLA4.

          RESEARCH DESIGN AND METHODS

          To model the disease-associated splicing variation of CTLA4, we generated NOD mice in which sCTLA-4 mRNA is silenced by RNA interference.

          RESULTS

          We found that loss of sCTLA-4 impairs the function of regulatory T (Treg) cells. This functional defect could be attributed, at least in part, to the failure of sCTLA-4 knockdown (KD) Treg cells to downregulate dendritic cell costimulation. sCTLA-4 KD Treg cells, in contrast with wild-type Treg cells, failed to inhibit colitis induced by transfer of CD4 +CD45RB hi cells into NOD.SCID animals. Furthermore, diminished sCTLA-4 expression accelerated the onset of autoimmune diabetes in transgenic mice.

          CONCLUSIONS

          Our results demonstrate that sCTLA-4 participates in immune regulation by potentiating the function of Treg cells. The functional outcome of silencing this splice variant in the NOD model provides an explanation for the association of CTLA4 variation with autoimmunity. Lower sCTLA-4 expression from the susceptibility allele may directly affect the suppressive capacity of Treg cells and thereby modulate disease risk. Our unprecedented approach establishes the feasibility of modeling splicing variations relevant to autoimmunity.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          The NOD mouse: a model of immune dysregulation.

          Autoimmunity is a complex process that likely results from the summation of multiple defective tolerance mechanisms. The NOD mouse strain is an excellent model of autoimmune disease and an important tool for dissecting tolerance mechanisms. The strength of this mouse strain is that it develops spontaneous autoimmune diabetes, which shares many similarities to autoimmune or type 1a diabetes (T1D) in human subjects, including the presence of pancreas-specific autoantibodies, autoreactive CD4+ and CD8+ T cells, and genetic linkage to disease syntenic to that found in humans. During the past ten years, investigators have used a wide variety of tools to study these mice, including immunological reagents and transgenic and knockout strains; these tools have tremendously enhanced the study of the fundamental disease mechanisms. In addition, investigators have recently developed a number of therapeutic interventions in this animal model that have now been translated into human therapies. In this review, we summarize many of the important features of disease development and progression in the NOD strain, emphasizing the role of central and peripheral tolerance mechanisms that affect diabetes in these mice. The information gained from this highly relevant model of human disease will lead to potential therapies that may alter the development of the disease and its progression in patients with T1D.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4.

            The role of the cell-surface molecule CTLA-4 in the regulation of T cell activation has been controversial. Here, lymph nodes and spleens of CTLA-4-deficient mice accumulated T cell blasts with up-regulated activation markers. These blast cells also infiltrated liver, heart, lung, and pancreas tissue, and amounts of serum immunoglobulin were elevated. The mice invariably became moribund by 3 to 4 weeks of age. Although CTLA-4-deficient T cells proliferated spontaneously and strongly when stimulated through the T cell receptor, they were sensitive to cell death induced by cross-linking of the Fas receptor and by gamma irradiation. Thus, CTLA-4 acts as a negative regulator of T cell activation and is vital for the control of lymphocyte homeostasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation.

              Naturally occurring CD4(+)CD25(+) regulatory T cells (Treg) suppress in vitro the proliferation of other T cells in a cell-contact-dependent manner. Dendritic cells (DCs) appear to be a target of Treg-mediated immune suppression. We show here that, in coculture of dye-labeled Treg cells and CD4(+)CD25(-) naïve T cells in the presence of T cell receptor stimulation, Treg cells, which are more mobile than naïve T cells in vitro, out-compete the latter in aggregating around DCs. Deficiency or blockade of leukocyte function-associated antigen-1 (LFA-1) (CD11a/CD18) abrogates Treg aggregation, whereas that of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) (CD152) does not. After forming aggregates, Treg cells specifically down-regulate the expression of CD80/86, but not CD40 or class II MHC, on DCs in both a CTLA-4- and LFA-1-dependent manner. Notably, Treg exerts this CD80/86-down-modulating effect even in the presence of strong DC-maturating stimuli, such as GM-CSF, TNF-alpha, IFN-gamma, type I IFN, and lipopolysaccharide. Taken together, as a possible mechanism of in vitro Treg-mediated cell contact-dependent suppression, we propose that antigen-activated Treg cells exert suppression by two distinct steps: initial LFA-1-dependent formation of Treg aggregates on immature DCs and subsequent LFA-1- and CTLA-4-dependent active down-modulation of CD80/86 expression on DCs. Both steps prevent antigen-reactive naïve T cells from being activated by antigen-presenting DCs, resulting in specific immune suppression and tolerance.
                Bookmark

                Author and article information

                Journal
                Diabetes
                diabetes
                diabetes
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                July 2011
                20 June 2011
                : 60
                : 7
                : 1955-1963
                Affiliations
                [1] 1Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
                [2] 2Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K.
                Author notes
                Corresponding author: Stephan Kissler, stephan.kissler@ 123456virchow.uni-wuerzburg.de .
                Article
                0130
                10.2337/db11-0130
                3121435
                21602513
                a9557373-e07f-42e2-aa92-05d07abbb7d8
                © 2011 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 01 February 2011
                : 15 April 2011
                Categories
                Immunology and Transplantation

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article