Blog
About

26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Side-by-Side Comparison of the Biological Characteristics of Human Umbilical Cord and Adipose Tissue-Derived Mesenchymal Stem Cells

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Both human adipose tissue-derived mesenchymal stem cells (ASCs) and umbilical cord-derived mesenchymal stem cells (UC-MSCs) have been explored as attractive mesenchymal stem cells (MSCs) sources, but very few parallel comparative studies of these two cell types have been made. We designed a side-by-side comparative study by isolating MSCs from the adipose tissue and umbilical cords from mothers delivering full-term babies and thus compared the various biological aspects of ASCs and UC-MSCs derived from the same individual, in one study. Both types of cells expressed cell surface markers characteristic of MSCs. ASCs and UC-MSCs both could be efficiently induced into adipocytes, osteoblasts, and neuronal phenotypes. While there were no significant differences in their osteogenic differentiation, the adipogenesis of ASCs was more prominent and efficient than UC-MSCs. In the meanwhile, ASCs responded better to neuronal induction methods, exhibiting the higher differentiation rate in a relatively shorter time. In addition, UC-MSCs exhibited a more prominent secretion profile of cytokines than ASCs. These results indicate that although ASCs and UC-MSCs share considerable similarities in their immunological phenotype and pluripotentiality, certain biological differences do exist, which might have different implications for future cell-based therapy.

          Related collections

          Most cited references 47

          • Record: found
          • Abstract: found
          • Article: not found

          Multilineage cells from human adipose tissue: implications for cell-based therapies.

          Future cell-based therapies such as tissue engineering will benefit from a source of autologous pluripotent stem cells. For mesodermal tissue engineering, one such source of cells is the bone marrow stroma. The bone marrow compartment contains several cell populations, including mesenchymal stem cells (MSCs) that are capable of differentiating into adipogenic, osteogenic, chondrogenic, and myogenic cells. However, autologous bone marrow procurement has potential limitations. An alternate source of autologous adult stem cells that is obtainable in large quantities, under local anesthesia, with minimal discomfort would be advantageous. In this study, we determined if a population of stem cells could be isolated from human adipose tissue. Human adipose tissue, obtained by suction-assisted lipectomy (i.e., liposuction), was processed to obtain a fibroblast-like population of cells or a processed lipoaspirate (PLA). These PLA cells can be maintained in vitro for extended periods with stable population doubling and low levels of senescence. Immunofluorescence and flow cytometry show that the majority of PLA cells are of mesodermal or mesenchymal origin with low levels of contaminating pericytes, endothelial cells, and smooth muscle cells. Finally, PLA cells differentiate in vitro into adipogenic, chondrogenic, myogenic, and osteogenic cells in the presence of lineage-specific induction factors. In conclusion, the data support the hypothesis that a human lipoaspirate contains multipotent cells and may represent an alternative stem cell source to bone marrow-derived MSCs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Marrow stromal cells as stem cells for nonhematopoietic tissues.

             L D Prockop (1997)
            Marrow stromal cells can be isolated from other cells in marrow by their tendency to adhere to tissue culture plastic. The cells have many of the characteristics of stem cells for tissues that can roughly be defined as mesenchymal, because they can be differentiated in culture into osteoblasts, chondrocytes, adipocytes, and even myoblasts. Therefore, marrow stromal cells present an intriguing model for examining the differentiation of stem cells. Also, they have several characteristics that make them potentially useful for cell and gene therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adipose-derived stem cells: isolation, expansion and differentiation.

              The emerging field of regenerative medicine will require a reliable source of stem cells in addition to biomaterial scaffolds and cytokine growth factors. Adipose tissue has proven to serve as an abundant, accessible and rich source of adult stem cells with multipotent properties suitable for tissue engineering and regenerative medical applications. There has been increased interest in adipose-derived stem cells (ASCs) for tissue engineering applications. Here, methods for the isolation, expansion and differentiation of ASCs are presented and described in detail. While this article has focused on the isolation of ASCs from human adipose tissue, the procedure can be applied to adipose tissues from other species with minimal modifications.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2013
                7 July 2013
                : 2013
                Affiliations
                1Department of Stomatology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
                2Stem Cell Center, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
                3Department of Gynaecology and Obstetrics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
                Author notes

                Academic Editor: Susan A. Rotenberg

                Article
                10.1155/2013/438243
                3722850
                23936800
                Copyright © 2013 Li Hu et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Research Article

                Comments

                Comment on this article