41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Endometriosis, a disease of the macrophage

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endometriosis, a common cause of pelvic pain and female infertility, depends on the growth of vascularized endometrial tissue at ectopic sites. Endometrial fragments reach the peritoneal cavity during the fertile years: local cues decide whether they yield endometriotic lesions. Macrophages are recruited at sites of hypoxia and tissue stress, where they clear cell debris and heme-iron and generate pro-life and pro-angiogenesis signals. Macrophages are abundant in endometriotic lesions, where are recruited and undergo alternative activation. In rodents macrophages are required for lesions to establish and to grow; bone marrow-derived Tie-2 expressing macrophages specifically contribute to lesions neovasculature, possibly because they concur to the recruitment of circulating endothelial progenitors, and sustain their survival and the integrity of the vessel wall. Macrophages sense cues (hypoxia, cell death, iron overload) in the lesions and react delivering signals to restore the local homeostasis: their action represents a necessary, non-redundant step in the natural history of the disease. Endometriosis may be due to a misperception of macrophages about ectopic endometrial tissue. They perceive it as a wound, they activate programs leading to ectopic cell survival and tissue vascularization. Clearing this misperception is a critical area for the development of novel medical treatments of endometriosis, an urgent and unmet medical need.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          Points of control in inflammation.

          Inflammation is a complex set of interactions among soluble factors and cells that can arise in any tissue in response to traumatic, infectious, post-ischaemic, toxic or autoimmune injury. The process normally leads to recovery from infection and to healing, However, if targeted destruction and assisted repair are not properly phased, inflammation can lead to persistent tissue damage by leukocytes, lymphocytes or collagen. Inflammation may be considered in terms of its checkpoints, where binary or higher-order signals drive each commitment to escalate, go signals trigger stop signals, and molecules responsible for mediating the inflammatory response also suppress it, depending on timing and context. The non-inflammatory state does not arise passively from an absence of inflammatory stimuli; rather, maintenance of health requires the positive actions of specific gene products to suppress reactions to potentially inflammatory stimuli that do not warrant a full response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major.

            CD4+ T cells have a crucial role in mediating protection against a variety of pathogens through production of specific cytokines. However, substantial heterogeneity in CD4+ T-cell cytokine responses has limited the ability to define an immune correlate of protection after vaccination. Here, using multiparameter flow cytometry to assess the immune responses after immunization, we show that the degree of protection against Leishmania major infection in mice is predicted by the frequency of CD4+ T cells simultaneously producing interferon-gamma, interleukin-2 and tumor necrosis factor. Notably, multifunctional effector cells generated by all vaccines tested are unique in their capacity to produce high amounts of interferon-gamma. These data show that the quality of a CD4+ T-cell cytokine response can be a crucial determinant in whether a vaccine is protective, and may provide a new and useful prospective immune correlate of protection for vaccines based on T-helper type 1 (TH1) cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages.

              Sensors of pathogens, such as Toll-like receptors (TLRs), detect microbes to activate transcriptional programs that orchestrate adaptive responses to specific insults. Here we report that TLR4 and TLR2 specifically activated the endoplasmic reticulum (ER) stress sensor kinase IRE1alpha and its downstream target, the transcription factor XBP1. Previously described ER-stress target genes of XBP1 were not induced by TLR signaling. Instead, TLR-activated XBP1 was required for optimal and sustained production of proinflammatory cytokines in macrophages. Consistent with that finding, activation of IRE1alpha by ER stress acted in synergy with TLR activation for cytokine production. Moreover, XBP1 deficiency resulted in a much greater bacterial burden in mice infected with the TLR2-activating human intracellular pathogen Francisella tularensis. Our findings identify an unsuspected critical function for XBP1 in mammalian host defenses.
                Bookmark

                Author and article information

                Journal
                Front Immunol
                Front Immunol
                Front. Immun.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                28 January 2013
                2013
                : 4
                : 9
                Affiliations
                Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute Milan, Italy
                Author notes

                Edited by: Anna Rubartelli, National Cancer Research Institute, Italy

                Reviewed by: Paola Allavena, Clinical Institute Humanitas, Italy; Junji Yodoi, Kyoto University, Japan; Shaw-Jenq Tsai, National Cheng Kung University, Taiwan

                *Correspondence: Patrizia Rovere-Querini, Innate Immunity and Tissue Remodelling Unit, San Raffaele Scientific Institute, DIBIT 3A1, Via Olgettina 58, 20132 Milano, Italy. e-mail: rovere.patrizia@ 123456hsr.it

                This article was submitted to Frontiers in Inflammation, a specialty of Frontiers in Immunology.

                Article
                10.3389/fimmu.2013.00009
                3556586
                23372570
                a95ff036-83f2-4b87-b5b8-7ec48f06f176
                Copyright © Capobianco and Rovere-Querini.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 08 October 2012
                : 07 January 2013
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 174, Pages: 14, Words: 0
                Categories
                Immunology
                Review Article

                Immunology
                endometriosis,alternatively activated macrophages,angiogenesis,tie-2 expressing macrophages,iron,phagocytosis,hypoxia

                Comments

                Comment on this article