24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of Hippo Pathway in Cancer Stem Cell Biology

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The biological significance and deregulation of the Hippo pathway during organ growth and tumorigenesis have received a surge of interest in the past decade. The Hippo pathway core kinases, MST1/2 and LATS1/2, are tumor suppressors that inhibit the oncogenic nuclear function of YAP/TAZ and TEAD. In addition to earlier studies that highlight the role of Hippo pathway in organ size control, cell proliferation, and tumor development, recent evidence demonstrates its critical role in cancer stem cell biology, including EMT, drug resistance, and self-renewal. Here we provide a brief overview of the regulatory mechanisms of the Hippo pathway, its role in cancer stem cell biology, and promising therapeutic interventions.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling.

          The Hippo pathway is crucial in organ size control, and its dysregulation contributes to tumorigenesis. However, upstream signals that regulate the mammalian Hippo pathway have remained elusive. Here, we report that the Hippo pathway is regulated by G-protein-coupled receptor (GPCR) signaling. Serum-borne lysophosphatidic acid (LPA) and sphingosine 1-phosphophate (S1P) act through G12/13-coupled receptors to inhibit the Hippo pathway kinases Lats1/2, thereby activating YAP and TAZ transcription coactivators, which are oncoproteins repressed by Lats1/2. YAP and TAZ are involved in LPA-induced gene expression, cell migration, and proliferation. In contrast, stimulation of Gs-coupled receptors by glucagon or epinephrine activates Lats1/2 kinase activity, thereby inhibiting YAP function. Thus, GPCR signaling can either activate or inhibit the Hippo-YAP pathway depending on the coupled G protein. Our study identifies extracellular diffusible signals that modulate the Hippo pathway and also establishes the Hippo-YAP pathway as a critical signaling branch downstream of GPCR. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP.

            The Drosophila TEAD ortholog Scalloped is required for Yki-mediated overgrowth but is largely dispensable for normal tissue growth, suggesting that its mammalian counterpart may be exploited for selective inhibition of oncogenic growth driven by YAP hyperactivation. Here we test this hypothesis genetically and pharmacologically. We show that a dominant-negative TEAD molecule does not perturb normal liver growth but potently suppresses hepatomegaly/tumorigenesis resulting from YAP overexpression or Neurofibromin 2 (NF2)/Merlin inactivation. We further identify verteporfin as a small molecule that inhibits TEAD-YAP association and YAP-induced liver overgrowth. These findings provide proof of principle that inhibiting TEAD-YAP interactions is a pharmacologically viable strategy against the YAP oncoprotein.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response.

              The Hippo transducers YAP/TAZ have been shown to play positive, as well as negative, roles in Wnt signaling, but the underlying mechanisms remain unclear. Here, we provide biochemical, functional, and genetic evidence that YAP and TAZ are integral components of the β-catenin destruction complex that serves as cytoplasmic sink for YAP/TAZ. In Wnt-ON cells, YAP/TAZ are physically dislodged from the destruction complex, allowing their nuclear accumulation and activation of Wnt/YAP/TAZ-dependent biological effects. YAP/TAZ are required for intestinal crypt overgrowth induced by APC deficiency and for crypt regeneration ex vivo. In Wnt-OFF cells, YAP/TAZ are essential for β-TrCP recruitment to the complex and β-catenin inactivation. In Wnt-ON cells, release of YAP/TAZ from the complex is instrumental for Wnt/β-catenin signaling. In line, the β-catenin-dependent maintenance of ES cells in an undifferentiated state is sustained by loss of YAP/TAZ. This work reveals an unprecedented signaling framework relevant for organ size control, regeneration, and tumor suppression. Copyright © 2014 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Mol Cells
                Mol. Cells
                ksmcb
                Molecules and Cells
                Korean Society for Molecular and Cellular Biology
                1016-8478
                0219-1032
                28 February 2018
                05 February 2018
                : 41
                : 2
                : 83-92
                Affiliations
                Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
                Author notes
                [* ]Correspondence: hwp003@ 123456yonsei.ac.kr
                Article
                molce-41-2-83
                10.14348/molcells.2018.2242
                5824027
                29429151
                a96321a7-8598-4936-92f4-85a68d8a0450
                © The Korean Society for Molecular and Cellular Biology. All rights reserved.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/.

                History
                : 28 September 2017
                : 19 December 2017
                : 08 January 2018
                Categories
                Minireview

                cancer stem cell,hippo pathway,metastasis,yap/taz
                cancer stem cell, hippo pathway, metastasis, yap/taz

                Comments

                Comment on this article