23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Beneficial Effect of Ginsenoside Rg1 on Schwann Cells Subjected to Hydrogen Peroxide Induced Oxidative Injury

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ginsenoside Rg1 (GRg1) has been considered to have therapeutic potential in promoting peripheral nerve regeneration and functional recovery after sciatic nerve injuries. However, the mechanism underlying the beneficial effect of GRg1 on peripheral nerve regeneration is currently unclear. The possible effect of GRg1 on Schwann cells (SCs), which were subjected to oxidative injury after nerve injury, might contribute to the beneficial effect of GRg1 on nerve regeneration. The present study was designed to investigate the potential beneficial effect of GRg1 on SCs exposed to oxidative injury. The oxidative injury to SCs was induced by hydrogen peroxide. The effect of GRg1 (50 μM) on SCs exposed to oxidative injury was measured by the levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) and catalase (CAT) in SCs. The cell number and cell viability of SCs were evaluated through fluorescence observation and MTT assay. The apoptosis of SCs induced by oxidative injury was evaluated by an apoptosis assay. The expression and secretion of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) were evaluated using RT-PCR, Western blotting, and an ELISA method. We found that GRg1 significantly up-regulated the level of SOD, GSH and CAT, and decreased the level of MDA in SCs treated with hydrogen peroxide. In addition, GRg1 has been shown to be able to inhibit the proapoptotic effect of hydrogen peroxide, as well as inhibit the detrimental effect of hydrogen peroxide on cell number and cell viability. Furthermore, GRg1 also increased the mRNA levels, protein levels and secretion of NGF and BDNF in SCs after incubation of hydrogen peroxide. Further study showed that preincubation with H89 (a PKA inhibitor) significantly inhibited the effects induced by hydrogen peroxide, indicating that the PKA pathway might be involved in the antioxidant effect and neurotrophic factors (NTFs) promoting effect of GRg1. In addition, a short-term in vivo study was performed to confirm and validate the antioxidant effect and nerve regeneration-promoting effect of GRg1 in a sciatic crush injury model in rats. We found that GRg1 significantly increased SOD, CAT and GSH, decreased MDA, as well as promoted nerve regeneration after crush injury. In conclusion, the present study showed that GRg1 is capable of helping SCs recover from the oxidative insult induced by hydrogen peroxide, which might account, at least in part, for the beneficial effect of GRg1 on nerve regeneration.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury.

          Central neurons regenerate axons if a permissive environment is provided; after spinal cord injury, however, inhibitory molecules are present that make the local environment nonpermissive. A promising new strategy for inducing neurons to overcome inhibitory signals is to activate cAMP signaling. Here we show that cAMP levels fall in the rostral spinal cord, sensorimotor cortex and brainstem after spinal cord contusion. Inhibition of cAMP hydrolysis by the phosphodiesterase IV inhibitor rolipram prevents this decrease and when combined with Schwann cell grafts promotes significant supraspinal and proprioceptive axon sparing and myelination. Furthermore, combining rolipram with an injection of db-cAMP near the graft not only prevents the drop in cAMP levels but increases them above those in uninjured controls. This further enhances axonal sparing and myelination, promotes growth of serotonergic fibers into and beyond grafts, and significantly improves locomotion. These findings show that cAMP levels are key for protection, growth and myelination of injured CNS axons in vivo and recovery of function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Free radical pathways in CNS injury.

            Free radicals are highly reactive molecules implicated in the pathology of traumatic brain injury and cerebral ischemia, through a mechanism known as oxidative stress. After brain injury, reactive oxygen and reactive nitrogen species may be generated through several different cellular pathways, including calcium activation of phospholipases, nitric oxide synthase, xanthine oxidase, the Fenton and Haber-Weiss reactions, by inflammatory cells. If cellular defense systems are weakened, increased production of free radicals will lead to oxidation of lipids, proteins, and nucleic acids, which may alter cellular function in a critical way. The study of each of these pathways may be complex and laborious since free radicals are extremely short-lived. Recently, genetic manipulation of wild-type animals has yielded species that over- or under-express genes such as, copper-zinc superoxide dismutase, manganese superoxide dismutase, nitric oxide synthase, and the Bcl-2 protein. The introduction of the species has improved the understanding of oxidative stress. We conclude here that substantial experimental data links oxidative stress with other pathogenic mechanisms such as excitotoxicity, calcium overload, mitochondrial cytochrome c release, caspase activation, and apoptosis in central nervous system (CNS) trauma and ischemia, and that utilization of genetically manipulated animals offers a unique possibility to elucidate the role of free radicals in CNS injury in a molecular fashion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Schwann cells, neurotrophic factors, and peripheral nerve regeneration.

              The peripheral nervous system retains a considerable capacity for regeneration. However, functional recovery rarely returns to the preinjury level no matter how accurate the nerve repair is, and the more proximal the injury the worse the recovery. Among a variety of approaches being used to enhance peripheral nerve regeneration are the manipulation of Schwann cells and the use of neurotrophic factors. Such factors include, first, nerve growth factor (NGF) and the other recently identified members of the neurotrophin family, namely, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4/5 (NT-4/5); second, the neurokines ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF); and third, the transforming growth factors (TGFs)-beta and their distant relative, glial cell line-derived neurotrophic factor (GDNF). In this review article we focus on the roles in peripheral nerve regeneration of Schwann cells and of the neurotrophin family, CNTF and GDNF, and the relationship between these. Finally, we discuss what remains to be understood about the possible clinical use of neurotrophic factors.
                Bookmark

                Author and article information

                Journal
                Int J Biol Sci
                Int. J. Biol. Sci
                ijbs
                International Journal of Biological Sciences
                Ivyspring International Publisher (Sydney )
                1449-2288
                2013
                29 June 2013
                : 9
                : 6
                : 624-636
                Affiliations
                Department of Orthopedics, General Hospital of Shenyang Military Area Command of Chinese PLA, Shenyang, 110016 Liaoning, China.
                Author notes
                ✉ Corresponding author: Liangbi Xiang, Department of Orthopedics, General Hospital of Shenyang Military Area Command of Chinese PLA, Shenyang, 110016 Liaoning, China. Phone: 86-024-28856247; Fax: 86-024-28856247 Email: xiangliangbi1963@ 123456sina.com or cliffmjx@ 123456163.com .

                # Junxiong Ma, and Jun Liu contribute equally to this work.

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                ijbsv09p0624
                10.7150/ijbs.5885
                3708042
                23847444
                a9656981-b1f4-4604-be31-f9d7d95fc18d
                © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited.
                History
                : 16 January 2013
                : 18 June 2013
                Categories
                Research Paper

                Life sciences
                ginsenoside rg1 (grg1),schwann cell,hydrogen peroxide,oxidative injury.
                Life sciences
                ginsenoside rg1 (grg1), schwann cell, hydrogen peroxide, oxidative injury.

                Comments

                Comment on this article