10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of polystyrene microplastics on Daphnia magna mortality and reproduction in relation to food availability

      research-article
      ,
      PeerJ
      PeerJ Inc.
      Microplastics, Eco-toxicology, Daphnia magna, Chronic toxicity, Chlorella vulgaris, Polystyrene, Life history

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microplastics (MPs) in the environment continue to be a growing area of concern in terms of acute and chronic impacts on aquatic life. Whilst increasing numbers of studies are providing important insights into microparticle behaviour and impacts in the marine environment, a paucity of information exists regarding the freshwater environment. This study focusses on the uptake, retention and the impact of 2 µm polystyrene MPs in the freshwater cladoceran Daphnia magna in relation to food intake (algae Chlorella vulgaris), with MP size chosen to approximately match the cell size of the algae. Daphnia were exposed to varied concentrations of MPs and algae. When exposed to a single concentration of MPs Daphnia almost immediately ate them in large quantities. However, the presence of algae, even at low concentrations, had a significant negative impact on MP uptake that was not in proportion to relative availability. As MP concentrations increased, intake did not if algae were present, even at higher concentrations of MPs. This suggests that Daphnia are selectively avoiding eating plastics. Adult Daphnia exposed to MPs for 21 days showed mortality after seven days of exposure in all treatments compared to the control. However significant differences were all related to algal concentration rather than to MP concentration. This suggests that where ample food is present, MPs have little effect on adults. There was also no impact on their reproduction. The neonate toxicity test confirmed previous results that mortality and reproduction was linked to availability of food rather than MP concentrations. This would make sense in light of our suggestion that Daphnia are selectively avoiding eating microplastics.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Synthetic polymers in the marine environment: a rapidly increasing, long-term threat.

          Synthetic polymers, commonly known as plastics, have been entering the marine environment in quantities paralleling their level of production over the last half century. However, in the last two decades of the 20th Century, the deposition rate accelerated past the rate of production, and plastics are now one of the most common and persistent pollutants in ocean waters and beaches worldwide. Thirty years ago the prevailing attitude of the plastic industry was that "plastic litter is a very small proportion of all litter and causes no harm to the environment except as an eyesore" [Derraik, J.G.B., 2002. The pollution of the marine environment by plastic debris: a review. Mar. Pollut. Bull. 44(9), 842-852]. Between 1960 and 2000, the world production of plastic resins increased 25-fold, while recovery of the material remained below 5%. Between 1970 and 2003, plastics became the fastest growing segment of the US municipal waste stream, increasing nine-fold, and marine litter is now 60-80% plastic, reaching 90-95% in some areas. While undoubtedly still an eyesore, plastic debris today is having significant harmful effects on marine biota. Albatross, fulmars, shearwaters and petrels mistake floating plastics for food, and many individuals of these species are affected; in fact, 44% of all seabird species are known to ingest plastic. Sea turtles ingest plastic bags, fishing line and other plastics, as do 26 species of cetaceans. In all, 267 species of marine organisms worldwide are known to have been affected by plastic debris, a number that will increase as smaller organisms are assessed. The number of fish, birds, and mammals that succumb each year to derelict fishing nets and lines in which they become entangled cannot be reliably known; but estimates are in the millions. We divide marine plastic debris into two categories: macro, >5 mm and micro, <5 mm. While macro-debris may sometimes be traced to its origin by object identification or markings, micro-debris, consisting of particles of two main varieties, (1) fragments broken from larger objects, and (2) resin pellets and powders, the basic thermoplastic industry feedstocks, are difficult to trace. Ingestion of plastic micro-debris by filter feeders at the base of the food web is known to occur, but has not been quantified. Ingestion of degraded plastic pellets and fragments raises toxicity concerns, since plastics are known to adsorb hydrophobic pollutants. The potential bioavailability of compounds added to plastics at the time of manufacture, as well as those adsorbed from the environment are complex issues that merit more widespread investigation. The physiological effects of any bioavailable compounds desorbed from plastics by marine biota are being directly investigated, since it was found 20 years ago that the mass of ingested plastic in Great Shearwaters was positively correlated with PCBs in their fat and eggs. Colonization of plastic marine debris by sessile organisms provides a vector for transport of alien species in the ocean environment and may threaten marine biodiversity. There is also potential danger to marine ecosystems from the accumulation of plastic debris on the sea floor. The accumulation of such debris can inhibit gas exchange between the overlying waters and the pore waters of the sediments, and disrupt or smother inhabitants of the benthos. The extent of this problem and its effects have recently begun to be investigated. A little more than half of all thermoplastics will sink in seawater.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Large microplastic particles in sediments of tributaries of the River Thames, UK - Abundance, sources and methods for effective quantification.

              Sewage effluent input and population were chosen as predictors of microplastic presence in sediments at four sites in the River Thames basin (UK). Large microplastic particles (1mm-4mm) were extracted using a stepwise approach to include visual extraction, flotation and identification using Raman spectroscopy. Microplastics were found at all four sites. One site had significantly higher numbers of microplastics than other sites, average 66 particles 100g(-1), 91% of which were fragments. This site was downstream of a storm drain outfall receiving urban runoff; many of the fragments at this site were determined to be derived of thermoplastic road-surface marking paints. At the remaining three sites, fibres were the dominant particle type. The most common polymers identified included polypropylene, polyester and polyarylsulphone. This study describes two major new findings: presence of microplastic particles in a UK freshwater system and identification of road marking paints as a source of microplastics.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                peerj
                peerj
                PeerJ
                PeerJ Inc. (San Francisco, USA )
                2167-8359
                18 April 2018
                2018
                : 6
                : e4601
                Affiliations
                [-1] Ecology and Evolutionary Biology Section, School of Biological Sciences, University of Reading , Reading, United Kingdom
                Article
                4601
                10.7717/peerj.4601
                5911131
                29686944
                a96df0c5-b3da-485f-b0ae-0fcc00247d5b
                ©2018 Aljaibachi and Callaghan

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 18 November 2017
                : 21 March 2018
                Funding
                The authors received no funding for this work.
                Categories
                Ecology
                Ecotoxicology
                Environmental Impacts

                microplastics,eco-toxicology,daphnia magna,chronic toxicity,chlorella vulgaris,polystyrene,life history

                Comments

                Comment on this article