11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diversity of Yeasts and Molds by Culture-Dependent and Culture-Independent Methods for Mycobiome Surveillance of Traditionally Prepared Dried Starters for the Production of Indian Alcoholic Beverages

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Marcha, thiat, dawdim, hamei, humao, khekhrii, chowan, and phut are traditionally prepared dried starters used for production of various ethnic alcoholic beverages in North East states of India. The surveillance of mycobiome associated with these starters have been revealed by culture-dependent methods using phenotypic and molecular tools. We identified Wickerhamomyces anomalus, Pichia anomala, Saccharomycopsis fibuligera, Pichia terricola, Pichia kudriavzevii , and Candida glabrata by ITS-PCR. The diversity of yeasts and molds in all 40 samples was also investigated by culture-independent method using PCR-DGGE analysis. The average distributions of yeasts showed Saccharomyces cerevisiae (16.5%), Saccharomycopsis fibuligera (15.3%), Wickerhamomyces anomalus (11.3%), S. malanga (11.7%), Kluyveromyces marxianus (5.3%), Meyerozyma sp. (2.7%), Candida glabrata (2.7%), and many strains below 2%. About 12 strains of molds were also identified based on PCR-DGGE analysis which included Aspergillus penicillioides (5.0%), Rhizopus oryzae (3.3%), and sub-phylum: Mucoromycotina (2.1%). Different techniques used in this paper revealed the diversity and differences of mycobiome species in starter cultures of India which may be referred as baseline data for further research.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Review: Diversity of Microorganisms in Global Fermented Foods and Beverages

          Culturalable and non-culturable microorganisms naturally ferment majority of global fermented foods and beverages. Traditional food fermentation represents an extremely valuable cultural heritage in most regions, and harbors a huge genetic potential of valuable but hitherto undiscovered strains. Holistic approaches for identification and complete profiling of both culturalable and non-culturable microorganisms in global fermented foods are of interest to food microbiologists. The application of culture-independent technique has thrown new light on the diversity of a number of hitherto unknown and non-cultural microorganisms in naturally fermented foods. Functional bacterial groups (“phylotypes”) may be reflected by their mRNA expression in a particular substrate and not by mere DNA-level detection. An attempt has been made to review the microbiology of some fermented foods and alcoholic beverages of the world.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Yeast interactions and wine flavour.

            Wine is the product of complex interactions between fungi, yeasts and bacteria that commence in the vineyard and continue throughout the fermentation process until packaging. Although grape cultivar and cultivation provide the foundations of wine flavour, microorganisms, especially yeasts, impact on the subtlety and individuality of the flavour response. Consequently, it is important to identify and understand the ecological interactions that occur between the different microbial groups, species and strains. These interactions encompass yeast-yeast, yeast-filamentous fungi and yeast-bacteria responses. The surface of healthy grapes has a predominance of Aureobasidium pullulans, Metschnikowia, Hanseniaspora (Kloeckera), Cryptococcus and Rhodotorula species depending on stage of maturity. This microflora moderates the growth of spoilage and mycotoxigenic fungi on grapes, the species and strains of yeasts that contribute to alcoholic fermentation, and the bacteria that contribute to malolactic fermentation. Damaged grapes have increased populations of lactic and acetic acid bacteria that impact on yeasts during alcoholic fermentation. Alcoholic fermentation is characterised by the successional growth of various yeast species and strains, where yeast-yeast interactions determine the ecology. Through yeast-bacterial interactions, this ecology can determine progression of the malolactic fermentation, and potential growth of spoilage bacteria in the final product. The mechanisms by which one species/strain impacts on another in grape-wine ecosystems include: production of lytic enzymes, ethanol, sulphur dioxide and killer toxin/bacteriocin like peptides; nutrient depletion including removal of oxygen, and production of carbon dioxide; and release of cell autolytic components. Cell-cell communication through quorum sensing molecules needs investigation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Antimicrobial Properties and Mechanism of Action of Some Plant Extracts Against Food Pathogens and Spoilage Microorganisms

              This work aims to evaluate the antimicrobial potential of ethanolic and water extracts of roselle (Hibiscus sabdariffa), rosemary (Rosmarinus officinalis), clove (Syzygium aromaticum), and thyme (Thymus vulgaris) on some food pathogens and spoilage microorganisms. Agar well diffusion method has been used to determine the antimicrobial activities and minimum inhibitory concentrations (MIC) of different plant extracts against Gram-positive bacteria (Bacillus cereus, Staphylococcus aureus), Gram-negative bacteria (Escherichia coli, Salmonella enteritidis, Vibrio parahaemolyticus, and Pseudomonas aeruginosa), and one fungus (Candida albicans). The extracts exhibited both antibacterial and antifungal activities against tested microorganisms. Ethanolic roselle extract showed significant antibacterial activity (P < 0.05) against all tested bacterial strains, while no inhibitory effect on Candida albicans (CA) was observed. Only the ethanolic extracts of clove and thyme showed antifungal effects against CA with inhibition zones ranging from 25.2 ± 1.4 to 15.8 ± 1.2 mm, respectively. Bacillus cereus (BC) appears to be the most sensitive strain to the aqueous extract of clove with a MIC of 0.315%. To enhance our understanding of antimicrobial activity mechanism of plant extracts, the changes in internal pH (pHint), and membrane potential were measured in Staphylococcus aureus (SA) and Escherichia coli (EC) cells after exposure to the plant extracts. The results indicated that the plant extracts significantly affected the cell membrane of Gram-positive and Gram-negative bacteria, as demonstrated by the decline in pHint as well as cell membrane hyperpolarization. In conclusion, plant extracts are of great value as natural antimicrobials and can use safely as food preservatives.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                26 September 2018
                2018
                : 9
                : 2237
                Affiliations
                [1] 1DAICENTRE (DBT-AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, Department of Microbiology, School of Life Sciences, Sikkim University , Gangtok, India
                [2] 2National Centre for Microbial Resource, National Centre for Cell Science , Pune, India
                Author notes

                Edited by: Vittorio Capozzi, University of Foggia, Italy

                Reviewed by: Xiaolan Wang, Jiangxi Normal University, China; Chibundu Ngozi Ezekiel, Babcock University, Nigeria

                *Correspondence: Jyoti Prakash Tamang, jyoti_tamang@ 123456hotmail.com

                This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2018.02237
                6169615
                30319566
                a97140ee-35a9-4f99-9685-ed32b7ba8c3b
                Copyright © 2018 Sha, Suryavanshi, Jani, Sharma, Shouche and Tamang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 April 2018
                : 03 September 2018
                Page count
                Figures: 6, Tables: 4, Equations: 0, References: 88, Pages: 15, Words: 0
                Funding
                Funded by: Department of Biotechnology, Ministry of Science and Technology 10.13039/501100001407
                Award ID: BT/488NE/TBP/2013
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                mycobiome,dried starters,pcr-dgge analysis,yeasts,filamentous molds
                Microbiology & Virology
                mycobiome, dried starters, pcr-dgge analysis, yeasts, filamentous molds

                Comments

                Comment on this article