8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      To Trade or Not to Trade? Using Bayesian Belief Networks to Assess How to Manage Commercial Wildlife Trade in a Complex World

      , ,
      Frontiers in Ecology and Evolution
      Frontiers Media SA

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          International commercial trade in wildlife, whether legal or illegal, is one of the greatest threats to multiple species of wildlife today. Opinions on how to address it are deeply divided across the conservation community. Approaches fall into two broad categories: making the trade illegal to protect against any form of commercial trade or allowing some or all of the trade to be legal and seeking to manage it through sustainable trade. The conservation community is often deeply polarized on which is the better option. We posit that a way to choose between these options is by considering species-specific attributes of biological productivity, management context, and demand. We develop a conceptual framework to assess which option is more likely to result in successful conservation of a species. We show how to construct a Bayesian Belief Network (BBN) to model how these attributes (1) interact to affect the sustainability of the species’ population and (2) vary under different trade management regimes. This approach can support scientifically based decision-making, by predicting the likely sustainability outcome for a population of a species under different trade management regimes, given its particular characteristics and context. The BBN allows identification of key points at which conservation interventions could change the potential outcome. It also provides the opportunity to explore how different assumptions about how humans might respond to different trade regimes affects outcomes. We illustrate these ideas by using the BBN for a hypothetical terrestrial mammal species population and discuss how the BBN can be extended for species with different characteristics, for example, those that can be stockpiled or when there are multiple products. This approach has the potential to help the conservation community to assess the most appropriate regime for managing wildlife trade in a transparent, open, and scientifically based way.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Status and ecological effects of the world's largest carnivores.

          Large carnivores face serious threats and are experiencing massive declines in their populations and geographic ranges around the world. We highlight how these threats have affected the conservation status and ecological functioning of the 31 largest mammalian carnivores on Earth. Consistent with theory, empirical studies increasingly show that large carnivores have substantial effects on the structure and function of diverse ecosystems. Significant cascading trophic interactions, mediated by their prey or sympatric mesopredators, arise when some of these carnivores are extirpated from or repatriated to ecosystems. Unexpected effects of trophic cascades on various taxa and processes include changes to bird, mammal, invertebrate, and herpetofauna abundance or richness; subsidies to scavengers; altered disease dynamics; carbon sequestration; modified stream morphology; and crop damage. Promoting tolerance and coexistence with large carnivores is a crucial societal challenge that will ultimately determine the fate of Earth's largest carnivores and all that depends upon them, including humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Trophic downgrading of planet Earth.

            Until recently, large apex consumers were ubiquitous across the globe and had been for millions of years. The loss of these animals may be humankind's most pervasive influence on nature. Although such losses are widely viewed as an ethical and aesthetic problem, recent research reveals extensive cascading effects of their disappearance in marine, terrestrial, and freshwater ecosystems worldwide. This empirical work supports long-standing theory about the role of top-down forcing in ecosystems but also highlights the unanticipated impacts of trophic cascades on processes as diverse as the dynamics of disease, wildfire, carbon sequestration, invasive species, and biogeochemical cycles. These findings emphasize the urgent need for interdisciplinary research to forecast the effects of trophic downgrading on process, function, and resilience in global ecosystems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global biodiversity: indicators of recent declines.

              In 2002, world leaders committed, through the Convention on Biological Diversity, to achieve a significant reduction in the rate of biodiversity loss by 2010. We compiled 31 indicators to report on progress toward this target. Most indicators of the state of biodiversity (covering species' population trends, extinction risk, habitat extent and condition, and community composition) showed declines, with no significant recent reductions in rate, whereas indicators of pressures on biodiversity (including resource consumption, invasive alien species, nitrogen pollution, overexploitation, and climate change impacts) showed increases. Despite some local successes and increasing responses (including extent and biodiversity coverage of protected areas, sustainable forest management, policy responses to invasive alien species, and biodiversity-related aid), the rate of biodiversity loss does not appear to be slowing.
                Bookmark

                Author and article information

                Journal
                Frontiers in Ecology and Evolution
                Front. Ecol. Evol.
                Frontiers Media SA
                2296-701X
                March 3 2021
                March 3 2021
                : 9
                Article
                10.3389/fevo.2021.587896
                a98999e2-a585-4dc0-9723-637688aed55f
                © 2021

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article