31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Male Response to Female Ovulation in White-Faced Capuchins (Cebus capucinus): Variation in Fecal Testosterone, Dihydrotestosterone, and Glucocorticoids

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Male dominance rank and reproductive success in chimpanzees, Pan troglodytes schweinfurthii.

          Competition for fertile females determines male reproductive success in many species. The priority of access model predicts that male dominance rank determines access to females, but this model has been difficult to test in wild populations, particularly in promiscuous mating systems. Tests of the model have produced variable results, probably because of the differing socioecological circumstances of individual species and populations. We tested the predictions of the priority of access model in the chimpanzees of Gombe National Park, Tanzania. Chimpanzees are an interesting species in which to test the model because of their fission-fusion grouping patterns, promiscuous mating system and alternative male mating strategies. We determined paternity for 34 offspring over a 22-year period and found that the priority of access model was generally predictive of male reproductive success. However, we found that younger males had higher success per male than older males, and low-ranking males sired more offspring than predicted. Low-ranking males sired offspring with younger, less desirable females and by engaging in consortships more often than high-ranking fathers. Although alpha males never sired offspring with related females, inbreeding avoidance of high-ranking male relatives did not completely explain the success of low-ranking males. While our work confirms that male rank typically predicts male chimpanzee reproductive success, other factors are also important; mate choice and alternative male strategies can give low-ranking males access to females more often than would be predicted by the model. Furthermore, the success of younger males suggests that they are more successful in sperm competition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Avoiding the ‘Costs’ of Testosterone: Ecological Bases of Hormone-Behavior Interactions

            A combination of laboratory and field investigations of birds has shown that expression of behavior such as territorial aggression can occur throughout the year in many species and in different life history stages. Although it is well known that testosterone regulates territorial aggression in males during the breeding season, the correlation of plasma testosterone and aggression appears to be limited to periods of social instability when a male is challenged for his territory by another male, or when mate-guarding a sexually receptive female. How essentially identical aggression is modulated in non-breeding life history stages is not fully resolved, but despite low circulating levels of testosterone outside the breeding season, expression of territorial aggression does appear to be dependent upon aromatization of testosterone and an estrogen receptor-mediated mechanism. There is accumulating evidence that prolonged high levels of circulating testosterone may incur costs that may potentially reduce lifetime fitness. These include interference with paternal care, exposure to predators, increased risk of injury, loss of fat stores and possibly impaired immune system function and oncogenic effects. We propose six hypotheses to explain how these costs of high testosterone levels in blood may be avoided. These hypotheses are testable and may reveal many mechanisms resulting from selection to avoid the costs of testosterone. It should also be noted that the hypotheses are applicable to vertebrates in general, and may also be relevant for other hormones that have a highly specialized suite of actions in one life history stage (such as breeding), but also have a limited action in other life history stages when the full spectrum of effects would be inappropriate.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Natural selection and the evolution of reproductive effort.

              Reproductive effort is defined as that proportion of the total energy budget of an organism that is devoted to reproductive processes. Reproductive effort at a given age within a species will be selected to maximize reproductive value at that age. Reproductive effort is not directly affected by changes in juvenile survivorship, nor necessarily reduced by an increase in adult survivorship. Selection for high levels of reproductive effort should occur when extrinsic adult mortality is high, in environments with constant juvenile survivorship, and in good years for juvenile survivorship in a variable environment, provided that the quality of the year is predictable by adults. Data necessary to measure reproductive effort and to understand how selection results in different levels of effort between individuals and species are discussed. We make several predictions about the effect of increased resource availability on reproductive effort. The empirical bases for testing these predictions are presently inadequate, and we consider data on energy budgets of organisms in nature to be essential for such test. We also conclude that variance in life table parameters must be known in detail to understand the selective bases of levels of reproductive effort.
                Bookmark

                Author and article information

                Journal
                International Journal of Primatology
                Int J Primatol
                Springer Nature
                0164-0291
                1573-8604
                August 2014
                December 10 2013
                : 35
                : 3-4
                : 643-660
                Article
                10.1007/s10764-013-9742-4
                a98f0f52-6f39-42ac-bea9-1960b7805b4e
                © 2013
                History

                Comments

                Comment on this article