53
views
0
recommends
+1 Recommend
0 collections
    28
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MAF2 Is Regulated by Temperature-Dependent Splicing and Represses Flowering at Low Temperatures in Parallel with FLM

      research-article
      , , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plants enter their reproductive phase when the environmental conditions are favourable for the successful production of progeny. The transition from vegetative to reproductive phase is influenced by several environmental factors including ambient temperature. In the model plant Arabidopsis thaliana, SHORT VEGETATIVE PHASE (SVP) is critical for this pathway; svp mutants cannot modify their flowering time in response to ambient temperature. SVP encodes a MADS-box transcription factor that directly represses genes that promote flowering. SVP binds DNA in complexes with other MADS-box transcription factors, including FLOWERING LOCUS M (FLM), which acts with SVP to repress the floral transition at low temperatures. Small temperature changes post-transcriptionally regulate FLM through temperature-dependent alternative splicing (TD-AS). As ambient temperature increases, the predominant FLM splice isoform shifts to encode a protein incapable of exerting a repressive effect on flowering. Here we characterize a closely related MADS-box transcription factor, MADS AFFECTING FLOWERING2 (MAF2), which has independently evolved TD-AS. At low temperatures the most abundant MAF2 splice variant encodes a protein that interacts with SVP to repress flowering. At increased temperature the relative abundance of splice isoforms shifts in favour of an intron-retaining variant that introduces a premature termination codon. We show that this isoform encodes a protein that cannot interact with SVP or repress flowering. At lower temperatures MAF2 and SVP repress flowering in parallel with FLM and SVP, providing an additional input to sense ambient temperature for the control of flowering.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering.

          Winter-annual ecotypes of Arabidopsis are relatively late flowering, unless the flowering of these ecotypes is promoted by exposure to cold (vernalization). This vernalization-suppressible, late-flowering phenotype results from the presence of dominant, late-flowering alleles at two loci, FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). In this study, we report that flc null mutations result in early flowering, demonstrating that the role of active FLC alleles is to repress flowering. FLC was isolated by positional cloning and found to encode a novel MADS domain protein. The levels of FLC mRNA are regulated positively by FRI and negatively by LUMINIDEPENDENS. FLC is also negatively regulated by vernalization. Overexpression of FLC from a heterologous promoter is sufficient to delay flowering in the absence of an active FRI allele. We propose that the level of FLC activity acts through a rheostat-like mechanism to control flowering time in Arabidopsis and that modulation of FLC expression is a component of the vernalization response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of flowering time: all roads lead to Rome.

            Plants undergo a major physiological change as they transition from vegetative growth to reproductive development. This transition is a result of responses to various endogenous and exogenous signals that later integrate to result in flowering. Five genetically defined pathways have been identified that control flowering. The vernalization pathway refers to the acceleration of flowering on exposure to a long period of cold. The photoperiod pathway refers to regulation of flowering in response to day length and quality of light perceived. The gibberellin pathway refers to the requirement of gibberellic acid for normal flowering patterns. The autonomous pathway refers to endogenous regulators that are independent of the photoperiod and gibberellin pathways. Most recently, an endogenous pathway that adds plant age to the control of flowering time has been described. The molecular mechanisms of these pathways have been studied extensively in Arabidopsis thaliana and several other flowering plants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Arabidopsis, the Rosetta stone of flowering time?

              Multiple environmental and endogenous inputs regulate when plants flower. The molecular genetic dissection of flowering time control in Arabidopsis has identified an integrated network of pathways that quantitatively control the timing of this developmental switch. This framework provides the basis to understand the evolution of different reproductive strategies and how floral pathways interact through seasonal progression.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                8 May 2015
                2015
                : 10
                : 5
                : e0126516
                Affiliations
                [001]Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
                Ecole Normale Superieure, FRANCE
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: BD CAA. Performed the experiments: CAA MM. Analyzed the data: CAA MM BD. Wrote the paper: CAA BD.

                [¤]

                Current address: Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom

                Article
                PONE-D-14-57021
                10.1371/journal.pone.0126516
                4425511
                25955034
                a9b759c5-0c19-424c-a959-82dbd8b849b5
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 19 December 2014
                : 3 April 2015
                Page count
                Figures: 5, Tables: 0, Pages: 15
                Funding
                This work was funded by a BBSRC/ERA-CAPS award to BD (BLOOMNET, BB/G024995/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article