2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Practical Considerations When Prescribing Icodextrin: A Narrative Review

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Icodextrin is a peritoneal dialysis solution that is commonly used to increase ultrafiltration during the long dwell. The other major clinical benefit of icodextrin is that it is glucose-sparing, which may help preserve peritoneal membrane function. Since it has a different chemical composition than dextrose, and with its increasing use, there are several clinical considerations healthcare providers must familiarize themselves with prior to prescribing icodextrin. Summary: Failure to recognize these special properties of icodextrin can lead to adverse events reaching patients. This narrative review explores the hemodynamic, metabolic, and idiopathic effects of icodextrin to facilitate the safe use of icodextrin in peritoneal dialysis. Key Messages: Hemodynamic effects include hypotension from enhanced ultrafiltration contributing to loss of residual kidney function. Metabolic effects include the chemical structure of icodextrin interfering with biochemical assays, resulting in misleading glucose readings on non-specific glucometers. Idiopathic adverse effects include a diffuse rash and sterile peritonitis. It is also important to remember that not all antibiotic combinations have undergone stability testing in icodextrin. This narrative review will help healthcare providers to confidently prescribe icodextrin to maximize its benefit in peritoneal dialysis patients.

          Related collections

          Most cited references 35

          • Record: found
          • Abstract: found
          • Article: not found

          Glucose meters: a review of technical challenges to obtaining accurate results.

          Glucose meters are universally utilized in the management of hypoglycemic and hyperglycemic disorders in a variety of healthcare settings. Establishing the accuracy of glucose meters, however, is challenging. Glucose meters can only analyze whole blood, and glucose is unstable in whole blood. Technical accuracy is defined as the closeness of agreement between a test result and the true value of that analyte. Truth for glucose is analysis by isotope dilution mass spectrometry, and frozen serum standards analyzed by this method are available from the National Institute of Standards and Technology. Truth for whole blood has not been established, and cells must be separated from the whole blood matrix before analysis by a method like isotope dilution mass spectrometry. Serum cannot be analyzed by glucose meters, and isotope dilution mass spectrometry is not commonly available in most hospitals and diabetes clinics to evaluate glucose meter accuracy. Consensus standards recommend comparing whole blood analysis on a glucose meter against plasma/serum centrifuged from a capillary specimen and analyzed by a clinical laboratory comparative method. Yet capillary samples may not provide sufficient volume to test by both methods, and venous samples may be used as an alternative when differences between venous and capillary blood are considered. There are thus multiple complexities involved in defining technical accuracy and no clear consensus among standards agencies and professional societies on accuracy criteria. Clinicians, however, are more concerned with clinical agreement of the glucose meter with a serum/plasma laboratory result. Acceptance criteria for clinical agreement vary across the range of glucose concentrations and depend on how the result will be used in screening or management of the patient. A variety of factors can affect glucose meter results, including operator technique, environmental exposure, and patient factors, such as medication, oxygen therapy, anemia, hypotension, and other disease states. This article reviews the challenges involved in obtaining accurate glucose meter results. Copyright 2009 Diabetes Technology Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of icodextrin on volume status, blood pressure and echocardiographic parameters: a randomized study.

            Overhydration is a risk factor for hypertension and left ventricular hypertrophy in peritoneal dialysis patients. Recently, a high prevalence of subclinical overhydration was observed in peritoneal dialysis patients. Aim of the present open-label randomized study was to assess the effect of a icodextrin 7.5% solution on fluid status [extracellular water (ECW) bromide dilution], blood pressure regulation (24-hour ambulatory measurements) and echocardiographic parameters during a study period of 4 months, and to relate the effect to peritoneal membrane characteristics (dialysate/plasma creatinine ratio). Forty peritoneal dialysis patients (22 treated with icodextrin, 18 controls) were randomized to either treatment with icodextrin during the long dwell or standard glucose solutions. Thirty-two patients (19 treated with icodextrin, 13 controls] completed the study. The use of icodextrin resulted in a significant increase in daily ultrafiltration volume (744 +/- 767 mL vs. 1670 +/- 1038 mL; P = 0.012) and a decrease in ECW (17.5 +/- 5.2 L vs. 15.8 +/- 3.8 L; P = 0.035). Also the change in ECW between controls and patients treated with icodextrin was significant (-1.7 +/- 3.3 L vs. +0.9 +/- 2.2 L; P = 0.013). The effect of icodextrin on ECW was not related to peritoneal membrane characteristics, but significantly related to the fluid state of the patients (ECW:height) (r = -0.72; P < 0.0001). Left ventricular mass (LVM) decreased significantly in the icodextrin-treated group (241 +/- 53 grams vs. 228 +/- 42 grams; P = 0.03), but not in the control group. In this randomized open-label study, the use of icodextrin resulted in a significant reduction in ECW and LVM. The effect of icodextrin on ECW was not related to peritoneal membrane characteristics, but was related to the initial fluid state of the patient.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A randomized controlled trial to evaluate the efficacy and safety of icodextrin in peritoneal dialysis.

               Beth Piraino,  ,  R Hamburger (2002)
              This article presents the results of two randomized, double-blind, controlled studies conducted to compare the efficacy and long-term safety of icodextrin and 2.5% dextrose for the once-daily long dwell in continuous ambulatory peritoneal dialysis (CAPD) and automated peritoneal dialysis (APD). Both studies were active-control comparisons of 7.5% icodextrin and 2.5% dextrose for the once-daily long dwell. The efficacy study was a 4-week evaluation of net ultrafiltration and peritoneal clearances of creatinine and urea nitrogen in 175 CAPD patients. The 52-week study in CAPD and APD patients examined the long-term safety of icodextrin and longer term effects, such as body weight and quality of life. Mean net ultrafiltration (587.2 versus 346.2 mL, P < 0.001) and clearances of urea nitrogen (4.5 versus 4.1 mL/min, P < 0.001) and creatinine (4.0 versus 3.5 mL/min, P < 0.001) were increased significantly with icodextrin. Patients receiving icodextrin had no increase in weight after 52 weeks, in contrast to a weight gain of almost 2 kg in the dextrose group (P < 0.05). There were significantly fewer patients reporting edema in the icodextrin group compared with the dextrose group (6.3% versus 17.9%, P < 0.01). There were no statistically significant differences between groups for the incidence and severity of adverse events. There were small decreases in sodium and chloride and increases in alkaline phosphatase with icodextrin. Icodextrin provides patients with greater fluid removal and small solute clearance, no weight gain over 52 weeks, and a decreased risk of edema. Copyright 2002 by the National Kidney Foundation, Inc.
                Bookmark

                Author and article information

                Journal
                AJN
                Am J Nephrol
                10.1159/issn.0250-8095
                American Journal of Nephrology
                S. Karger AG
                0250-8095
                1421-9670
                2014
                July 2014
                11 June 2014
                : 39
                : 6
                : 515-527
                Affiliations
                Division of Nephrology, St. Michael's Hospital, University of Toronto, Toronto, Ont., Canada
                Author notes
                *Dr. Samuel Silver, Division of Nephrology, St. Michael's Hospital, University of Toronto, 3-060 Shuter Wing, 30 Bond Street, Toronto, ON M5B 1W8 (Canada), E-Mail sam.silver@utoronto.ca
                Article
                363417 Am J Nephrol 2014;39:515-527
                10.1159/000363417
                24925229
                © 2014 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 3, Tables: 2, Pages: 13
                Categories
                In-Depth Topic Review

                Comments

                Comment on this article