3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Efficacy and safety of dihydroartemisinin–piperaquine versus artemether–lumefantrine for treatment of uncomplicated Plasmodium falciparum malaria in Ugandan children: a systematic review and meta-analysis of randomized control trials

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The emergence of artemisinin resistance in Southeast Asia and Plasmodium falciparum kelch13 propeller gene mutations in sub-Saharan African pose the greatest threat to global efforts to control malaria. This is a critical concern in Uganda, where artemisinin-based combination therapy (ACT) is the first-line treatment for uncomplicated falciparum. The objective of this study was to compare the efficacy and safety of dihydroartemisinin–piperaquine (DHA–PQ) and artemether–lumefantrine (AL) for the treatment of uncomplicated falciparum malaria in Ugandan children.

          Methods

          A search of PubMed and the Cochrane Central Register of Controlled Trials for retrieving randomized controlled trials comparing the efficacy and safety of DHA–PQ and AL for treatment of uncomplicated falciparum malaria in Ugandan children was done. The search was performed up to 31 August 2020. The data extracted from eligible studies and pooled as risk ratio (RR) with a 95% confidence interval (CI), using Rev Man Software (5.4). The protocol was registered in PROSPERO, ID: CRD42020182354.

          Results

          Eleven trials were included in this review and two of them only included under safety outcome. Total 3798 participants were enrolled. The PCR unadjusted treatment failure was significantly lower with DHA–PQ at day 28 (RR 0.30, 95% CI 0.19–0.49; participants = 7863; studies = 5; I 2 = 93%, low quality evidence) and at day 42 (RR 0.53, 95% CI 0.38–0.76; participants = 1618; studies = 4; I 2 = 79%, moderate quality of evidence). The PCR adjusted treatment failure at day 42 was significantly lower with DHA–PQ treatment group (RR 0.45, 95% CI 0.28 to 0.72; participants = 1370; studies = 5, high quality of evidence), and it was below 5% in both arms at day 28 (moderate quality of evidence). AL showed a longer prophylactic effect on new infections which may last for up to 63 days (PCR-adjusted treatment failure: RR 2.04, 95% CI 1.13–3.70; participants = 1311; studies = 2, moderate quality of evidence). Compared to AL, DHA–PQ was associated with a slightly higher frequency of cough (RR 1.07, 95% CI 1.01 to 1.13; 2575 participants; six studies; high quality of evidence). In both treatment groups, the risk of recurrent parasitaemia due to possible recrudescence was less than 5% at day 28. The appearance of gametocyte between 29 and 42 days was also significantly lower in DHA–PQ than AL (RR 0.26, 95% CI 0.12 to 0.56; participants = 623; studies = 2; I 2 = 0%).

          Conclusion

          Compared to AL, DHA–PQ appeared to reduce treatment failure and gametocyte carriage in Ugandan children. This may trigger DHA–PQ to become the first-line treatment option. Both treatments were safe and well-tolerated.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12936-021-03711-4.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: not found
          • Article: not found

          Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            GRADE guidelines 6. Rating the quality of evidence--imprecision.

            GRADE suggests that examination of 95% confidence intervals (CIs) provides the optimal primary approach to decisions regarding imprecision. For practice guidelines, rating down the quality of evidence (i.e., confidence in estimates of effect) is required if clinical action would differ if the upper versus the lower boundary of the CI represented the truth. An exception to this rule occurs when an effect is large, and consideration of CIs alone suggests a robust effect, but the total sample size is not large and the number of events is small. Under these circumstances, one should consider rating down for imprecision. To inform this decision, one can calculate the number of patients required for an adequately powered individual trial (termed the "optimal information size" [OIS]). For continuous variables, we suggest a similar process, initially considering the upper and lower limits of the CI, and subsequently calculating an OIS. Systematic reviews require a somewhat different approach. If the 95% CI excludes a relative risk (RR) of 1.0, and the total number of events or patients exceeds the OIS criterion, precision is adequate. If the 95% CI includes appreciable benefit or harm (we suggest an RR of under 0.75 or over 1.25 as a rough guide) rating down for imprecision may be appropriate even if OIS criteria are met. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Artemisinin resistance in Plasmodium falciparum malaria.

              Artemisinin-based combination therapies are the recommended first-line treatments of falciparum malaria in all countries with endemic disease. There are recent concerns that the efficacy of such therapies has declined on the Thai-Cambodian border, historically a site of emerging antimalarial-drug resistance. In two open-label, randomized trials, we compared the efficacies of two treatments for uncomplicated falciparum malaria in Pailin, western Cambodia, and Wang Pha, northwestern Thailand: oral artesunate given at a dose of 2 mg per kilogram of body weight per day, for 7 days, and artesunate given at a dose of 4 mg per kilogram per day, for 3 days, followed by mefloquine at two doses totaling 25 mg per kilogram. We assessed in vitro and in vivo Plasmodium falciparum susceptibility, artesunate pharmacokinetics, and molecular markers of resistance. We studied 40 patients in each of the two locations. The overall median parasite clearance times were 84 hours (interquartile range, 60 to 96) in Pailin and 48 hours (interquartile range, 36 to 66) in Wang Pha (P<0.001). Recrudescence confirmed by means of polymerase-chain-reaction assay occurred in 6 of 20 patients (30%) receiving artesunate monotherapy and 1 of 20 (5%) receiving artesunate-mefloquine therapy in Pailin, as compared with 2 of 20 (10%) and 1 of 20 (5%), respectively, in Wang Pha (P=0.31). These markedly different parasitologic responses were not explained by differences in age, artesunate or dihydroartemisinin pharmacokinetics, results of isotopic in vitro sensitivity tests, or putative molecular correlates of P. falciparum drug resistance (mutations or amplifications of the gene encoding a multidrug resistance protein [PfMDR1] or mutations in the gene encoding sarco-endoplasmic reticulum calcium ATPase6 [PfSERCA]). Adverse events were mild and did not differ significantly between the two treatment groups. P. falciparum has reduced in vivo susceptibility to artesunate in western Cambodia as compared with northwestern Thailand. Resistance is characterized by slow parasite clearance in vivo without corresponding reductions on conventional in vitro susceptibility testing. Containment measures are urgently needed. (ClinicalTrials.gov number, NCT00493363, and Current Controlled Trials number, ISRCTN64835265.) 2009 Massachusetts Medical Society
                Bookmark

                Author and article information

                Contributors
                dawit.getachew@aau.edu.et
                Journal
                Malar J
                Malar J
                Malaria Journal
                BioMed Central (London )
                1475-2875
                1 April 2021
                1 April 2021
                2021
                : 20
                : 174
                Affiliations
                [1 ]GRID grid.7123.7, ISNI 0000 0001 1250 5688, College of Health Sciences, Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), , Addis Ababa University, ; P.O. Box 9086, Addis Ababa, Ethiopia
                [2 ]GRID grid.472268.d, ISNI 0000 0004 1762 2666, Department of Nursing, College of Health Science and Medicine, , Dilla University, ; Dilla, Ethiopia
                [3 ]GRID grid.472427.0, ISNI 0000 0004 4901 9087, Department of Midwifery, College of Health Science, , Bule-Hora University, ; Bule-Hora, Ethiopia
                [4 ]Department of Obstetrics and Gynecology, Saint Paul’s Hospital Millennium Medical College, Addis Ababa, Ethiopia
                [5 ]Hager Biomedical Research Institute, Asmara, Eritrea
                [6 ]Arsi University, Asella, Ethiopia
                Author information
                http://orcid.org/0000-0002-9951-5762
                Article
                3711
                10.1186/s12936-021-03711-4
                8017896
                33386070
                a9c719d4-d524-45c4-b60c-e9b9ef06827e
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 25 November 2020
                : 24 March 2021
                Categories
                Research
                Custom metadata
                © The Author(s) 2021

                Infectious disease & Microbiology
                uncomplicated plasmodium falciparum,children,randomized controlled trial,artemisinin combination therapies,dihydroartemisinin–piperaquine,artemether–lumefantrine,systematic review and meta-analysis,uganda

                Comments

                Comment on this article

                scite_

                Similar content360

                Cited by5

                Most referenced authors923