6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TEEG Induced A549 Cell Autophagy by Regulating the PI3K/AKT/mTOR Signaling Pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          TEEG (3 β,16 β,23-trihydroxy-13,28-epoxyurs-11-ene-3-O- β-D-glucopyranoside) is derived from the chloroform extract of the Chinese medicine formula Shenqi San (CE-SS). In the present study, we aimed to elucidate the anticancer effect and possible molecular mechanism underlying the action of TEEG against the human non-small cell lung cancer (NSCLC) cell line A549 in vitro. A549 cells were incubated with different concentrations of TEEG. Cell proliferation was assessed by MTT assay. Autophagy was evaluated by immunofluorescence staining. Autophagy-associated proteins were examined by Western blot analysis. TEEG markedly inhibited A549 cell proliferation in a concentration-dependent manner. Immunofluorescence staining showed that TEEG induced autophagy in A549 cells. The LC3-II : LC3-I conversion ratio and the expression of Beclin-1, Atg5, Atg7, and Atg12 increased with the concentration of TEEG. In addition, increased TEEG concentration enhanced the expression of Class III p-PI3K and reduced the expression of Class I p-PI3K, p-AKT, p-mTOR, and p-P70S6K. These results indicate that TEEG induces autophagy of A549 cells through regulation of the PI3K/AKT/mTOR signaling pathway.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum

          Autophagy is the engulfment of cytosol and organelles by double-membrane vesicles termed autophagosomes. Autophagosome formation is known to require phosphatidylinositol 3-phosphate (PI(3)P) and occurs near the endoplasmic reticulum (ER), but the exact mechanisms are unknown. We show that double FYVE domain–containing protein 1, a PI(3)P-binding protein with unusual localization on ER and Golgi membranes, translocates in response to amino acid starvation to a punctate compartment partially colocalized with autophagosomal proteins. Translocation is dependent on Vps34 and beclin function. Other PI(3)P-binding probes targeted to the ER show the same starvation-induced translocation that is dependent on PI(3)P formation and recognition. Live imaging experiments show that this punctate compartment forms near Vps34-containing vesicles, is in dynamic equilibrium with the ER, and provides a membrane platform for accumulation of autophagosomal proteins, expansion of autophagosomal membranes, and emergence of fully formed autophagosomes. This PI(3)P-enriched compartment may be involved in autophagosome biogenesis. Its dynamic relationship with the ER is consistent with the idea that the ER may provide important components for autophagosome formation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Life and death partners: apoptosis, autophagy and the cross-talk between them.

            It is not surprising that the demise of a cell is a complex well-controlled process. Apoptosis, the first genetically programmed death process identified, has been extensively studied and its contribution to the pathogenesis of disease well documented. Yet, apoptosis does not function alone to determine a cell's fate. More recently, autophagy, a process in which de novo-formed membrane-enclosed vesicles engulf and consume cellular components, has been shown to engage in a complex interplay with apoptosis. In some cellular settings, it can serve as a cell survival pathway, suppressing apoptosis, and in others, it can lead to death itself, either in collaboration with apoptosis or as a back-up mechanism when the former is defective. The molecular regulators of both pathways are inter-connected; numerous death stimuli are capable of activating either pathway, and both pathways share several genes that are critical for their respective execution. The cross-talk between apoptosis and autophagy is therefore quite complex, and sometimes contradictory, but surely critical to the overall fate of the cell. Furthermore, the cross-talk is a key factor in the outcome of death-related pathologies such as cancer, its development and treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Protein turnover via autophagy: implications for metabolism.

              Autophagy is a process of cellular "self-eating" in which portions of cytoplasm are sequestered within double-membrane cytosolic vesicles termed autophagosomes. The autophagosome cargo is delivered to the lysosome, broken down, and the resulting amino acids recycled after release back into the cytosol. Autophagy occurs in all eukaryotes and can be up-regulated in response to various nutrient limitations. Under these conditions, autophagy may become essential for viability. In addition, autophagy plays a role in certain diseases, acting to prevent some types of neurodegeneration and cancer, and in the elimination of invading pathogens. We review the current information on the mechanism of autophagy, with a focus on its role in protein metabolism and intracellular homeostasis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Anal Cell Pathol (Amst)
                Anal Cell Pathol (Amst)
                ACP
                Analytical Cellular Pathology (Amsterdam)
                Hindawi
                2210-7177
                2210-7185
                2019
                30 April 2019
                : 2019
                : 7697610
                Affiliations
                1Department of Pharmacy, Medical College, Jianghan University, Hubei, Wuhan 430056, China
                2Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Hubei, Wuhan 430065, China
                3Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
                Author notes

                Guest Editor: Mingjun Shi

                Author information
                http://orcid.org/0000-0001-9466-2344
                Article
                10.1155/2019/7697610
                6515120
                a9d9d491-ed8b-4b38-b832-34874be8da39
                Copyright © 2019 Lu Shi et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 18 January 2019
                : 20 March 2019
                : 7 April 2019
                Funding
                Funded by: Jianghan University
                Award ID: 08250001
                Funded by: China Postdoctoral Science Foundation
                Award ID: 2016M592320
                Funded by: Natural Science Foundation of Hubei Province
                Award ID: 2018CFB657
                Categories
                Research Article

                Comments

                Comment on this article