5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DNA damage and Repair Modify DNA methylation and Chromatin Domain of the Targeted Locus: Mechanism of allele methylation polymorphism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We characterize the changes in chromatin structure, DNA methylation and transcription during and after homologous DNA repair (HR). We find that HR modifies the DNA methylation pattern of the repaired segment. HR also alters local histone H3 methylation as well chromatin structure by inducing DNA-chromatin loops connecting the 5′ and 3′ ends of the repaired gene. During a two-week period after repair, transcription-associated demethylation promoted by Base Excision Repair enzymes further modifies methylation of the repaired DNA. Subsequently, the repaired genes display stable but diverse methylation profiles. These profiles govern the levels of expression in each clone. Our data argue that DNA methylation and chromatin remodelling induced by HR may be a source of permanent variation of gene expression in somatic cells.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          TET enzymes, TDG and the dynamics of DNA demethylation.

          DNA methylation has a profound impact on genome stability, transcription and development. Although enzymes that catalyse DNA methylation have been well characterized, those that are involved in methyl group removal have remained elusive, until recently. The transformative discovery that ten-eleven translocation (TET) family enzymes can oxidize 5-methylcytosine has greatly advanced our understanding of DNA demethylation. 5-Hydroxymethylcytosine is a key nexus in demethylation that can either be passively depleted through DNA replication or actively reverted to cytosine through iterative oxidation and thymine DNA glycosylase (TDG)-mediated base excision repair. Methylation, oxidation and repair now offer a model for a complete cycle of dynamic cytosine modification, with mounting evidence for its significance in the biological processes known to involve active demethylation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            XRCC3 promotes homology-directed repair of DNA damage in mammalian cells.

            Homology-directed repair of DNA damage has recently emerged as a major mechanism for the maintenance of genomic integrity in mammalian cells. The highly conserved strand transferase, Rad51, is expected to be critical for this process. XRCC3 possesses a limited sequence similarity to Rad51 and interacts with it. Using a novel fluorescence-based assay, we demonstrate here that error-free homology-directed repair of DNA double-strand breaks is decreased 25-fold in an XRCC3-deficient hamster cell line and can be restored to wild-type levels through XRCC3 expression. These results establish that XRCC3-mediated homologous recombination can reverse DNA damage that would otherwise be mutagenic or lethal.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role for DNA methylation in genomic imprinting.

              The paternal and maternal genomes are not equivalent and both are required for mammalian development. The difference between the parental genomes is believed to be due to gamete-specific differential modification, a process known as genomic imprinting. The study of transgene methylation has shown that methylation patterns can be inherited in a parent-of-origin-specific manner, suggesting that DNA methylation may play a role in genomic imprinting. The functional significance of DNA methylation in genomic imprinting was strengthened by the recent finding that CpG islands (or sites) in three imprinted genes, H19, insulin-like growth factor 2 (Igf-2), and Igf-2 receptor (Igf-2r), are differentially methylated depending on their parental origin. We have examined the expression of these three imprinted genes in mutant mice that are deficient in DNA methyltransferase activity. We report here that expression of all three genes was affected in mutant embryos: the normally silent paternal allele of the H19 gene was activated, whereas the normally active paternal allele of the Igf-2 gene and the active maternal allele of the Igf-2r gene were repressed. Our results demonstrate that a normal level of DNA methylation is required for controlling differential expression of the paternal and maternal alleles of imprinted genes.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                15 September 2016
                2016
                : 6
                : 33222
                Affiliations
                [1 ]Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Istituto di Endocrinologia ed Oncologia Sperimentale del C.N.R., Università Federico II , 80131 Napoli, Italy
                [2 ]Dipartimento di Biologia, Università Federico II , 80126 Napoli, Italy
                [3 ]Epigenetics Division, TopoGEN, Inc., 27960 CR319, Buena Vista , Colorado, 81211, USA
                [4 ]Institute of Cancer Research, Columbia University Medical Center , New York, New York, 10032, USA
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep33222
                10.1038/srep33222
                5024116
                27629060
                a9dae028-1080-4c6e-90f8-1bc1b2baeb5c
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 22 April 2016
                : 23 August 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article