32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Verification of impact of morning showering and mist sauna bathing on human physiological functions and work efficiency during the day

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recently, a growing number in Japan are switching to taking baths in the morning (morning bathing). However, the effects of the morning bathing on human physiological functions and work efficiency have not yet been revealed. Then, we hypothesized that the effect of morning bathing on physiological functions would be different from those of night bathing. In this study, we measured the physiological functions and work efficiency during the day following the morning bathing (7:10–7:20) including showering, mist sauna bathing, and no bathing as a control. Ten male healthy young adults participated in this study as the subjects. We evaluated the rectal temperature (Tre), skin temperature (Tsk), heart rate (HR), heart rate variability (HRV), blood pressure (BP), the relative power density of the alpha wave (α-wave ratio) of electroencephalogram, alpha attenuation coefficient (AAC), and the error rate of the task performance. As a result, we found that the HR after the mist sauna bathing was significantly lower than those after no bathing rest 3 (11:00). Furthermore, we verified that the α-wave ratio of the Pz after the mist sauna bathing was significantly lower than those after no bathing during the task 6 (15:00). On the other hand, the α-wave ratio of the Pz after the mist sauna bathing was significantly higher than those after showering during the rest 3 (11:00). Tsk after the mist sauna bathing was higher than those after the showering at 9:00 and 15:00. In addition, the error rate of the task performance after the mist sauna bathing was lower than those after no bathing and showering at 14:00. This study concludes that a morning mist sauna is safe and maintains both skin temperature compared to other bathing methods. Moreover, it is presumed that the morning mist sauna bathing improves work efficiency comparing other bathing methods during the task period of the day following the morning bathing.

          Related collections

          Most cited references 35

          • Record: found
          • Abstract: found
          • Article: not found

          Frontoparietal cortex controls spatial attention through modulation of anticipatory alpha rhythms.

          A dorsal frontoparietal network, including regions in intraparietal sulcus (IPS) and frontal eye field (FEF), has been hypothesized to control the allocation of spatial attention to environmental stimuli. One putative mechanism of control is the desynchronization of electroencephalography (EEG) alpha rhythms (approximately 8-12 Hz) in visual cortex in anticipation of a visual target. We show that brief interference by repetitive transcranial magnetic stimulation (rTMS) with preparatory activity in right IPS or right FEF while subjects attend to a spatial location impairs identification of target visual stimuli approximately 2 s later. This behavioral effect is associated with the disruption of anticipatory (prestimulus) alpha desynchronization and its spatially selective topography in parieto-occipital cortex. Finally, the disruption of anticipatory alpha rhythms in occipital cortex after right IPS- or right FEF-rTMS correlates with deficits of visual identification. These results support the causal role of the dorsal frontoparietal network in the control of visuospatial attention, and suggest that this is partly exerted through the synchronization of occipital visual neurons.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Assessment of autonomic function in humans by heart rate spectral analysis.

            Spectral analysis of spontaneous heart rate fluctuations were assessed by use of autonomic blocking agents and changes in posture. Low-frequency fluctuations (below 0.12 Hz) in the supine position are mediated entirely by the parasympathetic nervous system. On standing, the low-frequency fluctuations increase and are jointly mediated by the sympathetic and parasympathetic nervous systems. High-frequency fluctuations, at the respiratory frequency, are decreased by standing and are mediated solely by the parasympathetic system. Heart rate spectral analysis is a powerful noninvasive tool for quantifying autonomic nervous system activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The strength of anticipatory spatial biasing predicts target discrimination at attended locations: a high-density EEG study.

              Cueing relevant spatial locations in advance of a visual target results in modulated processing of that target as a consequence of anticipatory attentional deployment, the neural signatures of which remain to be fully elucidated. A set of electrophysiological processes has been established as candidate markers of the invocation and maintenance of attentional bias in humans. These include spatially-selective event-related potential (ERP) components over the lateral parietal (around 200-300 ms post-cue), frontal (300-500 ms) and ventral visual (> 500 ms) cortex, as well as oscillatory amplitude changes in the alpha band (8-14 Hz). Here, we interrogated the roles played by these anticipatory processes in attentional orienting by testing for links with subsequent behavioral performance. We found that both target discriminability (d') and reaction times were significantly predicted on a trial-by-trial basis by lateralization of alpha-band amplitude in the 500 ms preceding the target, with improved speed and accuracy resulting from a greater relative decrease in alpha over the contralateral visual cortex. Reaction time was also predicted by a late posterior contralateral positivity in the broad-band ERP in the same time period, but this did not influence d'. In a further analysis we sought to identify the control signals involved in generating the anticipatory bias, by testing earlier broad-band ERP amplitude for covariation with alpha lateralization. We found that stronger alpha biasing was associated with a greater bilateral frontal positivity at approximately 390 ms but not with differential amplitude across hemispheres in any time period. Thus, during the establishment of an anticipatory spatial bias, while the expected target location is strongly encoded in lateralized activity in parietal and frontal areas, a distinct non-spatial control process seems to regulate the strength of the bias.
                Bookmark

                Author and article information

                Contributors
                +81-4-7137-8184 , +81-4-7137-8008 , yisoomin@chiba-u.jp
                h_katsumata@tokyo-gas.co.jp
                shimomura@faculty.chiba-u.jp
                katsu@faculty.chiba-u.jp
                Journal
                Int J Biometeorol
                Int J Biometeorol
                International Journal of Biometeorology
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0020-7128
                1432-1254
                12 November 2014
                12 November 2014
                2015
                : 59
                : 9
                : 1207-1212
                Affiliations
                [ ]Center for Environment, Health and Field Sciences, Chiba University, 6-2-1 Kashiwanoha, Kashiwa, Chiba, 277-0882 Japan
                [ ]Urban Research Institute, Tokyo Gas Co., Tokyo, Japan
                [ ]Graduate School of Engineering, Chiba University, Chiba12, Japan
                Article
                932
                10.1007/s00484-014-0932-3
                4532712
                25388947
                © The Author(s) 2014

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

                Categories
                Original Paper
                Custom metadata
                © ISB 2015

                Comments

                Comment on this article