+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          People with diabetes can suffer from diverse complications that seriously erode quality of life. Diabetes, costing the United States more than $174 billion per year in 2007, is expected to take an increasingly large financial toll in subsequent years. Accurate projections of diabetes burden are essential to policymakers planning for future health care needs and costs.


          Using data on prediabetes and diabetes prevalence in the United States, forecasted incidence, and current US Census projections of mortality and migration, the authors constructed a series of dynamic models employing systems of difference equations to project the future burden of diabetes among US adults. A three-state model partitions the US population into no diabetes, undiagnosed diabetes, and diagnosed diabetes. A four-state model divides the state of "no diabetes" into high-risk (prediabetes) and low-risk (normal glucose) states. A five-state model incorporates an intervention designed to prevent or delay diabetes in adults at high risk.


          The authors project that annual diagnosed diabetes incidence (new cases) will increase from about 8 cases per 1,000 in 2008 to about 15 in 2050. Assuming low incidence and relatively high diabetes mortality, total diabetes prevalence (diagnosed and undiagnosed cases) is projected to increase from 14% in 2010 to 21% of the US adult population by 2050. However, if recent increases in diabetes incidence continue and diabetes mortality is relatively low, prevalence will increase to 33% by 2050. A middle-ground scenario projects a prevalence of 25% to 28% by 2050. Intervention can reduce, but not eliminate, increases in diabetes prevalence.


          These projected increases are largely attributable to the aging of the US population, increasing numbers of members of higher-risk minority groups in the population, and people with diabetes living longer. Effective strategies will need to be undertaken to moderate the impact of these factors on national diabetes burden. Our analysis suggests that widespread implementation of reasonably effective preventive interventions focused on high-risk subgroups of the population can considerably reduce, but not eliminate, future increases in diabetes prevalence.

          Related collections

          Most cited references 21

          • Record: found
          • Abstract: found
          • Article: not found

          Economic costs of diabetes in the U.S. In 2007.

          The prevalence of diabetes continues to grow, with the number of people in the U.S. with diagnosed diabetes now reaching 17.5 million. The objectives of this study are to quantify the economic burden of diabetes caused by increased health resource use and lost productivity, and to provide a detailed breakdown of the costs attributed to diabetes. This study uses a prevalence-based approach that combines the demographics of the population in 2007 with diabetes prevalence rates and other epidemiological data, health care costs, and economic data into a Cost of Diabetes Model. Health resource use and associated medical costs are analyzed by age, sex, type of medical condition, and health resource category. Data sources include national surveys and claims databases, as well as a proprietary database that contains annual medical claims for 16.3 million people in 2006. The total estimated cost of diabetes in 2007 is $174 billion, including $116 billion in excess medical expenditures and $58 billion in reduced national productivity. Medical costs attributed to diabetes include $27 billion for care to directly treat diabetes, $58 billion to treat the portion of diabetes-related chronic complications that are attributed to diabetes, and $31 billon in excess general medical costs. The largest components of medical expenditures attributed to diabetes are hospital inpatient care (50% of total cost), diabetes medication and supplies (12%), retail prescriptions to treat complications of diabetes (11%), and physician office visits (9%). People with diagnosed diabetes incur average expenditures of $11,744 per year, of which $6,649 is attributed to diabetes. People with diagnosed diabetes, on average, have medical expenditures that are approximately 2.3 times higher than what expenditures would be in the absence of diabetes. For the cost categories analyzed, approximately $1 in $5 health care dollars in the U.S. is spent caring for someone with diagnosed diabetes, while approximately $1 in $10 health care dollars is attributed to diabetes. Indirect costs include increased absenteeism ($2.6 billion) and reduced productivity while at work ($20.0 billion) for the employed population, reduced productivity for those not in the labor force ($0.8 billion), unemployment from disease-related disability ($7.9 billion), and lost productive capacity due to early mortality ($26.9 billion). The actual national burden of diabetes is likely to exceed the $174 billion estimate because it omits the social cost of intangibles such as pain and suffering, care provided by nonpaid caregivers, excess medical costs associated with undiagnosed diabetes, and diabetes-attributed costs for health care expenditures categories omitted from this study. Omitted from this analysis are expenditure categories such as health care system administrative costs, over-the-counter medications, clinician training programs, and research and infrastructure development. The burden of diabetes is imposed on all sectors of society-higher insurance premiums paid by employees and employers, reduced earnings through productivity loss, and reduced overall quality of life for people with diabetes and their families and friends.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Full Accounting of Diabetes and Pre-Diabetes in the U.S. Population in 1988–1994 and 2005–2006

            OBJECTIVE—We examined the prevalences of diagnosed diabetes, and undiagnosed diabetes and pre-diabetes using fasting and 2-h oral glucose tolerance test values, in the U.S. during 2005–2006. We then compared the prevalences of these conditions with those in 1988–1994. RESEARCH DESIGN AND METHODS—In 2005–2006, the National Health and Nutrition Examination Survey included a probability sample of 7,267 people aged ≥12 years. Participants were classified according to glycemic status by interview for diagnosed diabetes and by fasting and 2-h glucoses measured in subsamples. RESULTS—In 2005–2006, the crude prevalence of total diabetes in people aged ≥20 years was 12.9%, of which ∼40% was undiagnosed. In people aged ≥20 years, the crude prevalence of impaired fasting glucose was 25.7% and of impaired glucose tolerance was 13.8%, with almost 30% having either. Over 40% of individuals had diabetes or pre-diabetes. Almost one-third of the elderly had diabetes, and three-quarters had diabetes or pre-diabetes. Compared with non-Hispanic whites, age- and sex-standardized prevalence of diagnosed diabetes was approximately twice as high in non-Hispanic blacks (P < 0.0001) and Mexican Americans (P = 0.0001), whereas undiagnosed diabetes was not higher. Crude prevalence of diagnosed diabetes in people aged ≥20 years rose from 5.1% in 1988–1994 to 7.7% in 2005–2006 (P = 0.0001); this was significant after accounting for differences in age and sex, particularly in non-Hispanic blacks. Prevalences of undiagnosed diabetes and pre-diabetes were generally stable, although the proportion of total diabetes that was undiagnosed decreased in Mexican Americans. CONCLUSIONS—Over 40% of people aged ≥20 years have hyperglycemic conditions, and prevalence is higher in minorities. Diagnosed diabetes has increased over time, but other conditions have been relatively stable.
              • Record: found
              • Abstract: found
              • Article: not found

              Onset of NIDDM occurs at least 4-7 yr before clinical diagnosis.

              To investigate duration of the period between diabetes onset and its clinical diagnosis. Two population-based groups of white patients with non-insulin-dependent diabetes (NIDDM) in the United States and Australia were studied. Prevalence of retinopathy and duration of diabetes subsequent to clinical diagnosis were determined for all subjects. Weighted linear regression was used to examine the relationship between diabetes duration and prevalence of retinopathy. Prevalence of retinopathy at clinical diagnosis of diabetes was estimated to be 20.8% in the U.S. and 9.9% in Australia and increased linearly with longer duration of diabetes. By extrapolating this linear relationship to the time when retinopathy prevalence was estimated to be zero, onset of detectable retinopathy was calculated to have occurred approximately 4-7 yr before diagnosis of NIDDM. Because other data indicate that diabetes may be present for 5 yr before retinopathy becomes evident, onset of NIDDM may occur 9-12 yr before its clinical diagnosis. These findings suggest that undiagnosed NIDDM is not a benign condition. Clinically significant morbidity is present at diagnosis and for years before diagnosis. During this preclinical period, treatment is not being offered for diabetes or its specific complications, despite the fact that reduction in hyperglycemia, hypertension, and cardiovascular risk factors is believed to benefit patients. Imprecise dating of diabetes onset also obscures investigations of the etiology of NIDDM and studies of the nature and importance of risk factors for diabetes complications.

                Author and article information

                Popul Health Metr
                Population Health Metrics
                BioMed Central
                22 October 2010
                : 8
                : 29
                [1 ]Division of Diabetes Translation, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Mailstop K10, 4770 Buford Highway NE, Atlanta GA 30341 USA
                [2 ]Hubert Department of Global Health, Rollins School of Public Health RM 740, Emory University, Atlanta GA 30329 USA
                Copyright ©2010 Boyle et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


                Health & Social care


                Comment on this article