7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Phosphorylation of the insulin receptor in permeabilized adipocytes is coupled to a rapid dephosphorylation reaction.

      The Journal of Biological Chemistry
      Adipose Tissue, metabolism, Animals, Cell Membrane, Digitonin, pharmacology, Insulin, Kinetics, Male, Molecular Weight, Phosphoproteins, Phosphorylation, Phosphotyrosine, Rats, Rats, Inbred Strains, Receptor, Insulin, Tyrosine, analogs & derivatives, Vanadates

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phosphorylation and dephosphorylation of the insulin receptor were examined in permeabilized rat adipocytes using pulse-chase techniques. Maximum insulin-dependent phosphorylation during a 2-min labeling period with 75 microM [gamma-32P]ATP was attained at 10(-6)-10(-7) M insulin with a small effect at 10(-9) M. The reaction utilized either Mn2+ or Mg2+, but insulin-dependent phosphorylation was 11-fold greater with Mn2+. In the absence of insulin, phosphorylation was 6-fold greater with Mn2+. With either cation, insulin (10(-7) M) was a potent stimulator of receptor phosphorylation with 5- and 8-fold increases above control levels in the presence of Mg2+ and Mn2+, respectively. Phosphorylation of the insulin receptor reached an apparent steady state within 30 s at 37 degrees C under all conditions. By phosphoamino acid analysis, all insulin- and Mn2+-dependent phosphorylation in the 95-kDa subunit of the insulin receptor was phosphotyrosine. A small amount of phosphoserine was detected, but it was not affected by either insulin or Mn2+. Dephosphorylation of the insulin receptor was examined by "chasing" labeled ATP after 2 min with a 40-fold excess of unlabeled ATP. Maximum dephosphorylation was reached in 2 min under all conditions. Insulin had no effect on the dephosphorylation reaction. The labile fraction of Mn2+-dependent phosphoreceptor dephosphorylated to one-half of its initial level in approximately 21 s at 37 degrees C. Vanadate, a potent phosphotyrosine phosphatase inhibitor, inhibited dephosphorylation of this phosphoreceptor by 25%. When vanadate was present during the 2-min labeling period, phosphorylation of control, and insulin-dependent receptor was increased by 50%. In summary, rapid "in vitro" autophosphorylation of the insulin receptor is coupled to an equally rapid dephosphorylation reaction in permeabilized adipocytes. This suggests that phosphorylation of the insulin receptor is a dynamic, rapidly reversible, insulin-dependent response in target cells and is consistent with it being involved in insulin signal transduction and insulin action.

          Related collections

          Author and article information

          Comments

          Comment on this article