51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Monitoring of Bone Marrow Cell Homing Into the Infarcted Human Myocardium

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intracoronary transfer of autologous bone marrow cells (BMCs) promotes recovery of left ventricular systolic function in patients with acute myocardial infarction. Although the mechanisms of this effect remain to be established, homing of BMCs into the infarcted myocardium is probably a critical early event. We determined BMC biodistribution after therapeutic application in patients with a first ST-segment-elevation myocardial infarction who had undergone stenting of the infarct-related artery. Unselected BMCs were radiolabeled with 100 MBq 2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG) and infused into the infarct-related coronary artery (intracoronary; n=3 patients) or injected via an antecubital vein (intravenous; n=3 patients). In 3 additional patients, CD34-positive (CD34+) cells were immunomagnetically enriched from unselected BMCs, labeled with 18F-FDG, and infused intracoronarily. Cell transfer was performed 5 to 10 days after stenting. More than 99% of the infused total radioactivity was cell bound. Nucleated cell viability, comparable in all preparations, ranged from 92% to 96%. Fifty to 75 minutes after cell transfer, all patients underwent 3D PET imaging. After intracoronary transfer, 1.3% to 2.6% of 18F-FDG-labeled unselected BMCs were detected in the infarcted myocardium; the remaining activity was found primarily in liver and spleen. After intravenous transfer, only background activity was detected in the infarcted myocardium. After intracoronary transfer of 18F-FDG-labeled CD34-enriched cells, 14% to 39% of the total activity was detected in the infarcted myocardium. Unselected BMCs engrafted in the infarct center and border zone; homing of CD34-enriched cells was more pronounced in the border zone. 18F-FDG labeling and 3D PET imaging can be used to monitor myocardial homing and biodistribution of BMCs after therapeutic application in patients.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Endothelial progenitor cells: characterization and role in vascular biology.

          Infusion of different hematopoietic stem cell populations and ex vivo expanded endothelial progenitor cells augments neovascularization of tissue after ischemia and contributes to reendothelialization after endothelial injury, thereby, providing a novel therapeutic option. However, controversy exists with respect to the identification and the origin of endothelial progenitor cells. Overall, there is consensus that endothelial progenitor cells can derive from the bone marrow and that CD133/VEGFR2 cells represent a population with endothelial progenitor capacity. However, increasing evidence suggests that there are additional bone marrow-derived cell populations (eg, myeloid cells, "side population" cells, and mesenchymal cells) and non-bone marrow-derived cells, which also can give rise to endothelial cells. The characterization of the different progenitor cell populations and their functional properties are discussed. Mobilization and endothelial progenitor cell-mediated neovascularization is critically regulated. Stimulatory (eg, statins and exercise) or inhibitory factors (risk factors for coronary artery disease) modulate progenitor cell levels and, thereby, affect the vascular repair capacity. Moreover, recruitment and incorporation of endothelial progenitor cells requires a coordinated sequence of multistep adhesive and signaling events including adhesion and migration (eg, by integrins), chemoattraction (eg, by SDF-1/CXCR4), and finally the differentiation to endothelial cells. This review summarizes the mechanisms regulating endothelial progenitor cell-mediated neovascularization and reendothelialization.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts.

            The mammalian heart has a very limited regenerative capacity and, hence, heals by scar formation. Recent reports suggest that haematopoietic stem cells can transdifferentiate into unexpected phenotypes such as skeletal muscle, hepatocytes, epithelial cells, neurons, endothelial cells and cardiomyocytes, in response to tissue injury or placement in a new environment. Furthermore, transplanted human hearts contain myocytes derived from extra-cardiac progenitor cells, which may have originated from bone marrow. Although most studies suggest that transdifferentiation is extremely rare under physiological conditions, extensive regeneration of myocardial infarcts was reported recently after direct stem cell injection, prompting several clinical trials. Here, we used both cardiomyocyte-restricted and ubiquitously expressed reporter transgenes to track the fate of haematopoietic stem cells after 145 transplants into normal and injured adult mouse hearts. No transdifferentiation into cardiomyocytes was detectable when using these genetic techniques to follow cell fate, and stem-cell-engrafted hearts showed no overt increase in cardiomyocytes compared to sham-engrafted hearts. These results indicate that haematopoietic stem cells do not readily acquire a cardiac phenotype, and raise a cautionary note for clinical studies of infarct repair.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium.

              Under conditions of tissue injury, myocardial replication and regeneration have been reported. A growing number of investigators have implicated adult bone marrow (BM) in this process, suggesting that marrow serves as a reservoir for cardiac precursor cells. It remains unclear which BM cell(s) can contribute to myocardium, and whether they do so by transdifferentiation or cell fusion. Here, we studied the ability of c-kit-enriched BM cells, Lin- c-kit+ BM cells and c-kit+ Thy1.1(lo) Lin- Sca-1+ long-term reconstituting haematopoietic stem cells to regenerate myocardium in an infarct model. Cells were isolated from transgenic mice expressing green fluorescent protein (GFP) and injected directly into ischaemic myocardium of wild-type mice. Abundant GFP+ cells were detected in the myocardium after 10 days, but by 30 days, few cells were detectable. These GFP+ cells did not express cardiac tissue-specific markers, but rather, most of them expressed the haematopoietic marker CD45 and myeloid marker Gr-1. We also studied the role of circulating cells in the repair of ischaemic myocardium using GFP+-GFP- parabiotic mice. Again, we found no evidence of myocardial regeneration from blood-borne partner-derived cells. Our data suggest that even in the microenvironment of the injured heart, c-kit-enriched BM cells, Lin- c-kit+ BM cells and c-kit+ Thy1.1(lo) Lin- Sca-1+ long-term reconstituting haematopoietic stem cells adopt only traditional haematopoietic fates.
                Bookmark

                Author and article information

                Journal
                Circulation
                Circulation
                Ovid Technologies (Wolters Kluwer Health)
                0009-7322
                1524-4539
                May 03 2005
                May 03 2005
                : 111
                : 17
                : 2198-2202
                Affiliations
                [1 ]From the Departments of Nuclear Medicine (M.H., W.H.K.), Cardiology and Angiology (K.C.W., G.P.M., A.M., H.D.), and Hematology and Oncology (L.A., B.H., A.G.), Hanover Medical School, Hanover, Germany.
                Article
                10.1161/01.CIR.0000163546.27639.AA
                15851598
                aa026fd6-9ffc-4aa0-9afd-28b4cf68d136
                © 2005
                History

                Comments

                Comment on this article