12
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      Submit your digital health research with an established publisher
      - celebrating 25 years of open access

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Features and Functionalities of Smartphone Apps Related to COVID-19: Systematic Search in App Stores and Content Analysis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Knowledge of the quantity and quality of apps related to coronavirus disease (COVID-19) is lacking. In addition, no directory has been established listing all the apps developed to address the COVID-19 pandemic.

          Objective

          The aim of this study was to identify smartphone apps designed to address the COVID-19 pandemic and to analyze their characteristics.

          Methods

          We performed an observational, cross-sectional, descriptive study of all smartphone apps associated with COVID-19. Between April 27 and May 2, 2020, we searched the App Store (iOS) and Google Play Store (Android) for COVID-19 apps. The search terms used were coronavirus, COVID-19, and SARS-COV-2. The apps were downloaded and evaluated. The variables analyzed were name, platform, country, language, category, cost, update date, size, version, number of downloads, developer, and purpose. Purpose was further classified into the following categories: news, general information, self-diagnosis, contact tracing, notices to contacts, notification of close cases, awareness, helplines, monitoring of clinical parameters, recording of symptoms and treatment, and messaging with health care professionals.

          Results

          We identified 114 apps on the investigated platforms. Of these, 62/114 (54.4%) were on Android and 52/114 (45.6%) were on iOS. Of the 114 apps, 37 (32.5%) were developed in Europe, 32 (28.1%) in Asia, and 30 (26.3%) in North America. The most frequent languages were English (65/114, 57.0%), Spanish (34/114, 29.8%), and Chinese (14/114, 12.3%). The most common categories were health and well-being/fitness apps (41/114, 41.2%) and medicine apps (43/114, 37.7%). Of the 114 apps, 113 (99.1%) were free. The mean time between the date of the analysis and the date of the last update was 11.1 days (SD 11.0). Overall, 95 of the 114 apps (83.3%) were intended for the general population, 99 apps (7.9%) were intended for health professionals, and 3 apps (2.6%) were intended for both. Regarding the type of developer, 64/114 apps (56.1%) were developed by governments; 42/114 (64.1%) were developed by national governments, and 23/114 (35.9%) were developed by regional governments. The apps with the highest number of downloads (100,000+) were developed by governments ( P=.13), except for the World Health Organization app (500,000+). The purposes of the apps available in Western languages (107/114, 93.9%) were determined; the most common purposes were general information about COVID-19 (66, 64.0%), COVID-19 news (53, 51.0%), recording of symptoms (53, 51.0%), and contact tracing (51, 47.7%). More than one purpose was identified for 99/107 apps (92.5%).

          Conclusions

          This paper offers a comprehensive and unique review of all available COVID-19 apps. Governments have adopted these tools during the pandemic, and more than half of the apps were developed by government agencies. The most common purposes of the apps are providing information on the numbers of infected, recovered, and deceased patients, recording of symptoms, and contact tracing.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Geographical tracking and mapping of coronavirus disease COVID-19/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic and associated events around the world: how 21st century GIS technologies are supporting the global fight against outbreaks and epidemics

          In December 2019, a new virus (initially called ‘Novel Coronavirus 2019-nCoV’ and later renamed to SARS-CoV-2) causing severe acute respiratory syndrome (coronavirus disease COVID-19) emerged in Wuhan, Hubei Province, China, and rapidly spread to other parts of China and other countries around the world, despite China’s massive efforts to contain the disease within Hubei. As with the original SARS-CoV epidemic of 2002/2003 and with seasonal influenza, geographic information systems and methods, including, among other application possibilities, online real-or near-real-time mapping of disease cases and of social media reactions to disease spread, predictive risk mapping using population travel data, and tracing and mapping super-spreader trajectories and contacts across space and time, are proving indispensable for timely and effective epidemic monitoring and response. This paper offers pointers to, and describes, a range of practical online/mobile GIS and mapping dashboards and applications for tracking the 2019/2020 coronavirus epidemic and associated events as they unfold around the world. Some of these dashboards and applications are receiving data updates in near-real-time (at the time of writing), and one of them is meant for individual users (in China) to check if the app user has had any close contact with a person confirmed or suspected to have been infected with SARS-CoV-2 in the recent past. We also discuss additional ways GIS can support the fight against infectious disease outbreaks and epidemics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Rapid implementation of mobile technology for real-time epidemiology of COVID-19

            The rapid pace of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic (COVID-19) presents challenges to the robust collection of population-scale data to address this global health crisis. We established the COronavirus Pandemic Epidemiology (COPE) consortium to bring together scientists with expertise in big data research and epidemiology to develop a COVID-19 Symptom Tracker mobile application that we launched in the UK on March 24, 2020 and the US on March 29, 2020 garnering more than 2.8 million users as of May 2, 2020. This mobile application offers data on risk factors, herald symptoms, clinical outcomes, and geographical hot spots. This initiative offers critical proof-of-concept for the repurposing of existing approaches to enable rapidly scalable epidemiologic data collection and analysis which is critical for a data-driven response to this public health challenge.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Cluster of coronavirus disease 2019 (Covid-19) in the French Alps, 2020

              Abstract Background On 07/02/2020, French Health authorities were informed of a confirmed case of SARS-CoV-2 coronavirus in an Englishman infected in Singapore who had recently stayed in a chalet in the French Alps. We conducted an investigation to identify secondary cases and interrupt transmission. Methods We defined as a confirmed case a person linked to the chalet with a positive RT-PCR sample for SARS-CoV-2. Results The index case stayed 4 days in the chalet with 10 English tourists and a family of 5 French residents; SARS-CoV-2 was detected in 5 individuals in France, 6 in England (including the index case), and 1 in Spain (overall attack rate in the chalet: 75%). One pediatric case, with picornavirus and influenza A coinfection, visited 3 different schools while symptomatic. One case was asymptomatic, with similar viral load as that of a symptomatic case. Seven days after the first cases were diagnosed, one tertiary case was detected in a symptomatic patient with a positive endotracheal aspirate; all previous and concurrent nasopharyngeal specimens were negative. Additionally, 172 contacts were monitored, including 73 tested negative for SARS-CoV-2. Conclusions The occurrence in this cluster of one asymptomatic case with similar viral load as a symptomatic patient, suggests transmission potential of asymptomatic individuals. The fact that an infected child did not transmit the disease despite close interactions within schools suggests potential different transmission dynamics in children. Finally, the dissociation between upper and lower respiratory tract results underscores the need for close monitoring of the clinical evolution of suspect Covid-19 cases.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Med Internet Res
                J. Med. Internet Res
                JMIR
                Journal of Medical Internet Research
                JMIR Publications (Toronto, Canada )
                1439-4456
                1438-8871
                August 2020
                25 August 2020
                25 August 2020
                : 22
                : 8
                : e20334
                Affiliations
                [1 ] Hospital General Universitario Gregorio Marañón Madrid Spain
                Author notes
                Corresponding Author: Vicente Escudero-Vilaplana vicente.escudero@ 123456salud.madrid.org
                Author information
                https://orcid.org/0000-0001-7639-0082
                https://orcid.org/0000-0003-4417-8321
                https://orcid.org/0000-0002-4870-1629
                https://orcid.org/0000-0002-5517-0248
                https://orcid.org/0000-0002-8523-3721
                Article
                v22i8e20334
                10.2196/20334
                7479586
                32614777
                aa0b061c-1df1-4908-93b4-c7dbf48ad5cc
                ©Roberto Collado-Borrell, Vicente Escudero-Vilaplana, Cristina Villanueva-Bueno, Ana Herranz-Alonso, Maria Sanjurjo-Saez. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 25.08.2020.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included.

                History
                : 17 May 2020
                : 18 June 2020
                : 1 July 2020
                : 1 July 2020
                Categories
                Original Paper
                Original Paper

                Medicine
                covid-19,mobile apps,contact tracing,monitoring,telemedicine,smartphone
                Medicine
                covid-19, mobile apps, contact tracing, monitoring, telemedicine, smartphone

                Comments

                Comment on this article