62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mental Representation and Mental Practice: Experimental Investigation on the Functional Links between Motor Memory and Motor Imagery

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent research on mental representation of complex action has revealed distinct differences in the structure of representational frameworks between experts and novices. More recently, research on the development of mental representation structure has elicited functional changes in novices' representations as a result of practice. However, research investigating if and how mental practice adds to this adaptation process is lacking. In the present study, we examined the influence of mental practice (i.e., motor imagery rehearsal) on both putting performance and the development of one's representation of the golf putt during early skill acquisition. Novice golfers ( N = 52) practiced the task of golf putting under one of four different practice conditions: mental, physical, mental-physical combined, and no practice. Participants were tested prior to and after a practice phase, as well as after a three day retention interval. Mental representation structures of the putt were measured, using the structural dimensional analysis of mental representation. This method provides psychometric data on the distances and groupings of basic action concepts in long-term memory. Additionally, putting accuracy and putting consistency were measured using two-dimensional error scores of each putt. Findings revealed significant performance improvements over the course of practice together with functional adaptations in mental representation structure. Interestingly, after three days of practice, the mental representations of participants who incorporated mental practice into their practice regime displayed representation structures that were more similar to a functional structure than did participants who did not incorporate mental practice. The findings of the present study suggest that mental practice promotes the cognitive adaptation process during motor learning, leading to more elaborate representations than physical practice only.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Motor imagery.

          We describe general concepts about motor imagery and differences to motor execution. The problem of controlling what the subject actually does during imagery is emphasized. A major part of the chapter is dealing with mental training by imagery and the usage of motor imagination in athletes, musicians and during rehabilitation. Data of altered representations of the body after loss of afferent information and motor representation due to limb amputation or complete spinal cord injury are demonstrated and discussed. Finally we provide an outlook on additional work about motor imagery important for further understanding of the topic.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mental motor imagery: a window into the representational stages of action.

            The physiological basis of mental states can be effectively studied by combining cognitive psychology with human neuroscience. Recent research has employed mental motor imagery in normal and brain-damaged subjects to decipher the content and the structure of covert processes preceding the execution of action. The mapping of brain activity during motor imagery discloses a pattern of activation similar to that of an executed action.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Strength increases from the motor program: comparison of training with maximal voluntary and imagined muscle contractions.

              G. Yue, K Cole (1992)
              1. This study addressed potential neural mechanisms of the strength increase that occur before muscle hypertrophy. In particular we examined whether such strength increases may result from training-induced changes in voluntary motor programs. We compared the maximal voluntary force production after a training program of repetitive maximal isometric muscle contractions with force output after a training program that did not involve repetitive activation of muscle; that is, after mental training. 2. Subjects trained their left hypothenar muscles for 4 wk, five sessions per week. One group produced repeated maximal isometric contractions of the abductor muscles of the fifth digit's metacarpophalangeal joint. A second group imagined producing these same, effortful isometric contractions. A third group did not train their fifth digit. Maximal abduction force, flexion/extension force and electrically evoked twitch force (abduction) of the fifth digit were measured along with maximal integrated electromyograms (EMG) of the hypothenar muscles from both hands before and after training. 3. Average abduction force of the left fifth digit increased 22% for the Imagining group and 30% for the Contraction group. The mean increase for the Control group was 3.7%. 4. The maximal abduction force of the right (untrained) fifth digit increased significantly in both the Imagining and Contraction groups after training (10 and 14%, respectively), but not in the Control group (2.3%). These results are consistent with previous studies of training effects on contralateral limbs. 5. The abduction twitch force evoked by supramaximal electrical stimulations of the ulnar nerve was unchanged in all three groups after training, consistent with an absence of muscle hypertrophy. The maximal force of the left great toe extensors for individual subjects remained unchanged after training, which argues against strength increases due to general increases in effort level. 6. Increases in abduction and flexion forces of the fifth digit were poorly correlated in subjects of both training groups. The fifth finger abduction force and the hypothenar integrated EMG increases were not well correlated in these subjects either. Together these results indicate that training-induced changes of synergist and antagonist muscle activation patterns may have contributed to force increases in some of the subjects. 7. Strength increases can be achieved without repeated muscle activation. These force gains appear to result from practice effects on central motor programming/planning. The results of these experiments add to existing evidence for the neural origin of strength increases that occur before muscle hypertrophy.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                17 April 2014
                : 9
                : 4
                : e95175
                Affiliations
                [1 ]Neurocognition and Action - Biomechanics Research Group, Faculty of Psychology and Sports Science, Bielefeld University, Bielefeld, Germany
                [2 ]Cognitive Interaction Technology - Center of Excellence (CITEC), Bielefeld University, Bielefeld, Germany
                [3 ]Research Institute for Cognition and Robotics (CoR-Lab), Bielefeld University, Bielefeld, Germany
                [4 ]Department of Kinesiology, Health, & Nutrition, University of Texas at San Antonio, San Antonio, Texas, United States of America
                University of Udine, Italy
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: CF WML TS. Performed the experiments: CF CP. Analyzed the data: CF WML. Contributed reagents/materials/analysis tools: CF WML. Wrote the paper: CF WML TS.

                Article
                PONE-D-13-51798
                10.1371/journal.pone.0095175
                3990621
                24743576
                aa1af0ec-ac56-4f1d-8d49-867977286747
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 10 December 2013
                : 25 March 2014
                Page count
                Pages: 12
                Funding
                This research was supported by the German Research Foundation, Grant DFG EXC 277 Cognitive Interaction Technology (CITEC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Neuroscience
                Cognitive Science
                Cognition
                Memory
                Cognitive Psychology
                Learning
                Psychology
                Behavior
                Human Performance
                Applied Psychology
                Experimental Psychology
                Social Sciences

                Uncategorized
                Uncategorized

                Comments

                Comment on this article