13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent Developments in TSPO PET Imaging as A Biomarker of Neuroinflammation in Neurodegenerative Disorders

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neuroinflammation is an inflammatory response in the brain and spinal cord, which can involve the activation of microglia and astrocytes. It is a common feature of many central nervous system disorders, including a range of neurodegenerative disorders. An overlap between activated microglia, pro-inflammatory cytokines and translocator protein (TSPO) ligand binding was shown in early animal studies of neurodegeneration. These findings have been translated in clinical studies, where increases in TSPO positron emission tomography (PET) signal occur in disease-relevant areas across a broad spectrum of neurodegenerative diseases. While this supports the use of TSPO PET as a biomarker to monitor response in clinical trials of novel neurodegenerative therapeutics, the clinical utility of current TSPO PET radioligands has been hampered by the lack of high affinity binding to a prevalent form of polymorphic TSPO (A147T) compared to wild type TSPO. This review details recent developments in exploration of ligand-sensitivity to A147T TSPO that have yielded ligands with improved clinical utility. In addition to developing a non-discriminating TSPO ligand, the final frontier of TSPO biomarker research requires developing an understanding of the cellular and functional interpretation of the TSPO PET signal. Recent insights resulting from single cell analysis of microglial phenotypes are reviewed.

          Related collections

          Most cited references106

          • Record: found
          • Abstract: found
          • Article: not found

          Neuroinflammation: the devil is in the details.

          There is significant interest in understanding inflammatory responses within the brain and spinal cord. Inflammatory responses that are centralized within the brain and spinal cord are generally referred to as 'neuroinflammatory'. Aspects of neuroinflammation vary within the context of disease, injury, infection, or stress. The context, course, and duration of these inflammatory responses are all critical aspects in the understanding of these processes and their corresponding physiological, biochemical, and behavioral consequences. Microglia, innate immune cells of the CNS, play key roles in mediating these neuroinflammatory responses. Because the connotation of neuroinflammation is inherently negative and maladaptive, the majority of research focus is on the pathological aspects of neuroinflammation. There are, however, several degrees of neuroinflammatory responses, some of which are positive. In many circumstances including CNS injury, there is a balance of inflammatory and intrinsic repair processes that influences functional recovery. In addition, there are several other examples where communication between the brain and immune system involves neuroinflammatory processes that are beneficial and adaptive. The purpose of this review is to distinguish different variations of neuroinflammation in a context-specific manner and detail both positive and negative aspects of neuroinflammatory processes. In this review, we will use brain and spinal cord injury, stress, aging, and other inflammatory events to illustrate the potential harm and benefits inherent to neuroinflammation. Context, course, and duration of the inflammation are highly important to the interpretation of these events, and we aim to provide insight into this by detailing several commonly studied insults. This article is part of the 60th anniversary supplemental issue.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inflammation in neurodegenerative disease--a double-edged sword.

            Inflammation is a defense reaction against diverse insults, designed to remove noxious agents and to inhibit their detrimental effects. It consists of a dazzling array of molecular and cellular mechanisms and an intricate network of controls to keep them in check. In neurodegenerative diseases, inflammation may be triggered by the accumulation of proteins with abnormal conformations or by signals emanating from injured neurons. Given the multiple functions of many inflammatory factors, it has been difficult to pinpoint their roles in specific (patho)physiological situations. Studies of genetically modified mice and of molecular pathways in activated glia are beginning to shed light on this issue. Altered expression of different inflammatory factors can either promote or counteract neurodegenerative processes. Since many inflammatory responses are beneficial, directing and instructing the inflammatory machinery may be a better therapeutic objective than suppressing it.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Microglia and neuroinflammation: a pathological perspective

              Microglia make up the innate immune system of the central nervous system and are key cellular mediators of neuroinflammatory processes. Their role in central nervous system diseases, including infections, is discussed in terms of a participation in both acute and chronic neuroinflammatory responses. Specific reference is made also to their involvement in Alzheimer's disease where microglial cell activation is thought to be critically important in the neurodegenerative process.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                28 June 2019
                July 2019
                : 20
                : 13
                : 3161
                Affiliations
                [1 ]School of Chemistry, Faculty of Science, The University of Sydney, Sydney 2006, Australia
                [2 ]School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
                [3 ]School of Psychology and Brain and Mind Centre, Faculty of Science, The University of Sydney, Sydney 2006, Australia
                [4 ]Dementia Research Centre, Macquarie University, Faculty of Medicine and Health Sciences, Sydney 2109, Australia
                [5 ]Brain and Mind Centre, and the Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney 2006, Australia
                [6 ]Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney 2050, Australia
                [7 ]Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
                Author notes
                Author information
                https://orcid.org/0000-0002-6696-1440
                https://orcid.org/0000-0003-0422-8398
                https://orcid.org/0000-0001-9407-8674
                Article
                ijms-20-03161
                10.3390/ijms20133161
                6650818
                31261683
                aa27d9d7-a8b5-4222-afb8-500d3098a77c
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 02 May 2019
                : 20 May 2019
                Categories
                Review

                Molecular biology
                translocator protein,neuroinflammation,neurodegeneration,microglia,astrocytes
                Molecular biology
                translocator protein, neuroinflammation, neurodegeneration, microglia, astrocytes

                Comments

                Comment on this article