+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fatostatin in Combination with Tamoxifen Induces Synergistic Inhibition in ER-Positive Breast Cancer

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Tamoxifen is the cornerstone of adjuvant therapy for hormone receptor-positive breast cancer. Despite its efficacy, limited drug sensitivity and endocrine resistance remain the important clinical challenges. The main objective of this study was to investigate fatostatin, which was found to sensitize breast cancer to the antitumour effect of tamoxifen both in vitro and in vivo.


          Fatostatin-induced ER degradation was detected by immunoprecipitation assay. The antitumour effect of fatostatin and tamoxifen on MCF-7 and T47D cells was assessed by MTT and colony forming assays. Cell cycle arrest was detected by flow cytometric analysis. Apoptosis was detected by annexin V/propidium iodide double staining and TUNEL assay. Autophagy was detected by MDC assay and acridine orange staining. Migration and invasion assays were performed using a Transwell system, and the efficacy of the synergistic use of fatostatin and tamoxifen in vivo was evaluated using an MCF-7 xenograft model in BALB/c nu/nu female mice.


          The synergistic use of fatostatin and tamoxifen significantly suppressed cell viability and invasion, induced cell cycle arrest, and regulated apoptosis and autophagy in MCF-7 and T47D cell lines via PI3K-AKT-mTOR signalling. Additionally, the expression levels of Atg7/12/13, beclin and LC3B increased while p-mTOR and P62 expression levels decreased after treatment with fatostatin and tamoxifen. Tumor growth in the xenograft model was suppressed significantly with the synergistic treatment of fatostatin and tamoxifen.


          Fatostatin could induce ER degradation by K48-linked polyubiquitination, which was the key mechanism contributing to tamoxifen inhibition of PI3K-AKT-mTOR signalling in breast cancer. Fatostatin may have a promising clinical use for ER-positive breast cancer patients.

          Related collections

          Most cited references 30

          • Record: found
          • Abstract: found
          • Article: not found

          Biological determinants of endocrine resistance in breast cancer.

          Endocrine therapies targeting oestrogen action (anti-oestrogens, such as tamoxifen, and aromatase inhibitors) decrease mortality from breast cancer, but their efficacy is limited by intrinsic and acquired therapeutic resistance. Candidate molecular biomarkers and gene expression signatures of tamoxifen response emphasize the importance of deregulation of proliferation and survival signalling in endocrine resistance. However, definition of the specific genetic lesions and molecular processes that determine clinical endocrine resistance is incomplete. The development of large-scale computational and genetic approaches offers the promise of identifying the mediators of endocrine resistance that may be exploited as potential therapeutic targets and biomarkers of response in the clinic.
            • Record: found
            • Abstract: found
            • Article: not found

            Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling.

            Although patients with advanced refractory solid tumors have poor prognosis, the clinical development of targeted protein kinase inhibitors offers hope for the future treatment of many cancers. In vivo and in vitro studies have shown that the oral multikinase inhibitor, sorafenib, inhibits tumor growth and disrupts tumor microvasculature through antiproliferative, antiangiogenic, and/or proapoptotic effects. Sorafenib has shown antitumor activity in phase II/III trials involving patients with advanced renal cell carcinoma and hepatocellular carcinoma. The multiple molecular targets of sorafenib (the serine/threonine kinase Raf and receptor tyrosine kinases) may explain its broad preclinical and clinical activity. This review highlights the antitumor activity of sorafenib across a variety of tumor types, including renal cell, hepatocellular, breast, and colorectal carcinomas in the preclinical setting. In particular, preclinical evidence that supports the different mechanisms of action of sorafenib is discussed.
              • Record: found
              • Abstract: found
              • Article: not found

              Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation.

              Many cellular proteins are post-translationally modified by the addition of a single ubiquitin or a polyubiquitin chain. Among these are receptor tyrosine kinases (RTKs), which undergo ligand-dependent ubiquitination. The ubiquitination of RTKs has become recognized as an important signal for their endocytosis and degradation in the lysosome; however, it is not clear whether ubiquitination itself is sufficient for this process or simply participates in its regulation. The issue is further complicated by the fact that RTKs are thought to be polyubiquitinated - a modification that is linked to protein degradation by the proteasome. By contrast, monoubiquitination has been associated with diverse proteasome-independent cellular functions including intracellular protein movement. Here we show that the epidermal growth factor and platelet-derived growth factor receptors are not polyubiquitinated but rather are monoubiquitinated at multiple sites after their ligand-induced activation. By using different biochemical and molecular genetics approaches, we show that a single ubiquitin is sufficient for both receptor internalization and degradation. Thus, monoubiquitination is the principal signal responsible for the movement of RTKs from the plasma membrane to the lysosome.

                Author and article information

                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                26 August 2020
                : 14
                : 3535-3545
                [1 ]Department of Breast Surgery, Qilu Hospital of Shandong University , Ji’nan, Shandong, People’s Republic of China
                [2 ]Pathology Tissue Bank, Qilu Hospital of Shandong University , Ji’nan, Shandong, People’s Republic of China
                Author notes
                Correspondence: Qifeng Yang Email qifengy_sdu@163.com

                These authors contributed equally to this work

                © 2020 Liu et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                Page count
                Figures: 7, References: 42, Pages: 11
                Original Research


                Comment on this article