9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The anticancer effects of HDAC inhibitors require the immune system

      other

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Histone deacetylase inhibitors (HDACis) are known to exert immunomodulatory effects. We have recently demonstrated that the therapeutic efficacy of HDACis against aggressive B-cell lymphoma and colon carcinoma relies on a functional immune system, in particular on the production of interferon γ (IFNγ). Our findings provide a rationale for the combination of HDACis with immunotherapeutic agents in the clinic.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines.

          Suberoylanilide hydroxamic acid (SAHA) is a hydroxamic acid-containing hybrid polar molecule; SAHA specifically binds to and inhibits the activity of histone deacetylase. Although SAHA, like other inhibitors of histone deacetylase, exhibits antitumor effects by increasing expression of genes regulating tumor survival, we found that SAHA reduces the production of proinflammatory cytokines in vivo and in vitro. A single oral administration of SAHA to mice dose-dependently reduced circulating TNF-alpha, IL-1-beta, IL-6, and IFN-gamma induced by lipopolysaccharide (LPS). Administration of SAHA also reduced hepatic cellular injury in mice following i.v. injection of Con A. SAHA inhibited nitric oxide release in mouse macrophages stimulated by the combination of TNF-alpha plus IFN-gamma. Human peripheral blood mononuclear cells stimulated with LPS in the presence of SAHA released less TNF-alpha, IL-1-beta, IL-12, and IFN-gamma (50% reduction at 100-200 nM). The production of IFN-gamma stimulated by IL-18 plus IL-12 was also inhibited by SAHA (85% at 200 nM). However, SAHA did not affect LPS-induced synthesis of the IL-1-beta precursor, the IL-1 receptor antagonist, or the chemokine IL-8. In addition, IFN-gamma induced by anti-CD3 was not suppressed by SAHA. Steady-state mRNA levels for LPS-induced TNF-alpha and IFN-gamma in peripheral blood mononuclear cells were markedly decreased, whereas IL-8 and IL-1-beta mRNA levels were unaffected. Because SAHA exhibits antiinflammatory properties in vivo and in vitro, inhibitors of histone deacetylase may stimulate the expression of genes that control the synthesis of cytokines and nitric oxide or hyperacetylate other targets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors.

            Epigenetic mechanisms are involved in regulating chromatin structure and gene expression through repression. In this study, we show that histone deacetylase inhibitors (DAIs) that alter the acetylation of histones in chromatin enhance the expression of several genes on tumor cells including: MHC class I, II, and the costimulatory molecule CD40. Enhanced transcription results in a significant increase in protein expression on the tumor cell surface, and expression can be elicited on some tumors that are unresponsive to IFN-gamma. The magnitude of induction of these genes cannot be explained by the effect of DAIs on the cell cycle or enhanced apoptosis. Induction of class II genes by DAIs was accompanied by activation of a repressed class II transactivator gene in a plasma cell tumor but, in several other tumor cell lines, class II was induced in the apparent absence of class II transactivator transcripts. These findings also suggest that the abnormalities observed in some tumors in the expression of genes critical to tumor immunity may result from epigenetic alterations in chromatin and gene regulation in addition to well-established mutational mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3-dependent expression of MHC class I-related chain A and B.

              We show that histone deacetylase (HDAC) inhibitors lead to functional expression of MHC class I-related chain A and B (MICA/B) on cancer cells, making them potent targets for natural killer (NK) cell-mediated killing through a NK group 2, member D (NKG2D) restricted mechanism. Blocking either apoptosis or oxidative stress caused by HDAC inhibitor treatment did not affect MICA/B expression, suggesting involvement of a separate signal pathway not directly coupled to induction of cell death. HDAC inhibitor treatment induced glycogen synthase kinase-3 (GSK-3) activity and down-regulation of GSK-3 by small interfering RNA or by different inhibitors showed that GSK-3 activity is essential for the induced MICA/B expression. We thus present evidence that cancer cells which survive the direct induction of cell death by HDAC inhibitors become targets for NKG2D-expressing cells like NK cells, gammadelta T cells, and CD8 T cells.
                Bookmark

                Author and article information

                Journal
                Oncoimmunology
                Oncoimmunology
                ONCI
                Oncoimmunology
                Landes Bioscience
                2162-4011
                2162-402X
                01 January 2014
                01 January 2014
                01 January 2014
                : 3
                : 1
                : e27414
                Affiliations
                [1 ]Cancer Therapeutics Program; The Peter MacCallum Cancer Centre; East Melbourne, VIC Australia
                [2 ]Cancer Immunology Programs; The Peter MacCallum Cancer Centre; East Melbourne, VIC Australia
                [3 ]QIMR Berghofer Medical Research Institute; Herston, QLD Australia
                [4 ]School of Medicine; University of Queensland; Herston, QLD Australia
                [5 ]Sir Peter MacCallum Department of Oncology; University of Melbourne; Parkville, VIC Australia
                Author notes
                [†]

                These authors contributed equally to this work.

                [* ]Correspondence to: Ricky W Johnstone, Email: ricky.johnstone@ 123456petermac.org
                Article
                2013ONCOIMM0345 27414
                10.4161/onci.27414
                3962507
                24701376
                aa5396ff-3852-4dce-9439-6296a6307fa2
                Copyright © 2014 Landes Bioscience

                This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

                History
                : 29 November 2013
                : 02 December 2013
                Categories
                Author's View

                Immunology
                anticancer immunity,anticancer therapy,epigenetic regulatory agent,hdaci,immunogenic cell death,immunotherapy

                Comments

                Comment on this article