18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Changes in Human Population Density and Protected Areas in Terrestrial Global Biodiversity Hotspots, 1995–2015

      ,
      Land
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biodiversity hotspots are rich in endemic species and threatened by anthropogenic influences and, thus, considered priorities for conservation. In this study, conservation achievements in 36 global biodiversity hotspots (25 identified in 1988, 10 added in 2011, and one in 2016) were evaluated in relation to changes in human population density and protected area coverage between 1995 and 2015. Population densities were compared against 1995 global averages, and percentages of protected area coverage were compared against area-based targets outlined in Aichi target 11 of the Convention on Biological Diversity (17% by 2020) and calls for half Earth (50%). The two factors (average population density and percent protected area coverage) for each hotspot were then plotted to evaluate relative levels of threat to biodiversity conservation. Average population densities in biodiversity hotspots increased by 36% over the 20-year period, and were double the global average. The protected area target of 17% is achieved in 19 of the 36 hotspots; the 17 hotspots where this target has not been met are economically disadvantaged areas as defined by Gross Domestic Product. In 2015, there are seven fewer hotspots (22 in 1995; 15 in 2015) in the highest threat category (i.e., population density exceeding global average, and protected area coverage less than 17%). In the lowest threat category (i.e., population density below the global average, and a protected area coverage of 17% or more), there are two additional hotspots in 2015 as compared to 1995, attributable to gains in protected area. Only two hotspots achieve a target of 50% protection. Although conservation progress has been made in most global biodiversity hotspots, additional efforts are needed to slow and/or reduce population density and achieve protected area targets. Such conservation efforts are likely to require more coordinated and collaborative initiatives, attention to biodiversity objectives beyond protected areas, and support from the global community.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Biodiversity hotspots for conservation priorities.

          Conservationists are far from able to assist all species under threat, if only for lack of funding. This places a premium on priorities: how can we support the most species at the least cost? One way is to identify 'biodiversity hotspots' where exceptional concentrations of endemic species are undergoing exceptional loss of habitat. As many as 44% of all species of vascular plants and 35% of all species in four vertebrate groups are confined to 25 hotspots comprising only 1.4% of the land surface of the Earth. This opens the way for a 'silver bullet' strategy on the part of conservation planners, focusing on these hotspots in proportion to their share of the world's species at risk.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Urbanization, Biodiversity, and Conservation

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synergies among extinction drivers under global change.

              If habitat destruction or overexploitation of populations is severe, species loss can occur directly and abruptly. Yet the final descent to extinction is often driven by synergistic processes (amplifying feedbacks) that can be disconnected from the original cause of decline. We review recent observational, experimental and meta-analytic work which together show that owing to interacting and self-reinforcing processes, estimates of extinction risk for most species are more severe than previously recognised. As such, conservation actions which only target single-threat drivers risk being inadequate because of the cascading effects caused by unmanaged synergies. Future work should focus on how climate change will interact with and accelerate ongoing threats to biodiversity, such as habitat degradation, overexploitation and invasive species.
                Bookmark

                Author and article information

                Journal
                Land
                Land
                MDPI AG
                2073-445X
                December 2018
                November 15 2018
                : 7
                : 4
                : 136
                Article
                10.3390/land7040136
                aa57cc0b-db3a-4341-9009-97c7e39e9c1d
                © 2018

                https://creativecommons.org/licenses/by/4.0/

                History

                Biochemistry,Animal science & Zoology
                Biochemistry, Animal science & Zoology

                Comments

                Comment on this article