Blog
About

3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      KONG: Kernels for ordered-neighborhood graphs

      Preprint

      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present novel graph kernels for graphs with node and edge labels that have ordered neighborhoods, i.e. when neighbor nodes follow an order. Graphs with ordered neighborhoods are a natural data representation for evolving graphs where edges are created over time, which induces an order. Combining convolutional subgraph kernels and string kernels, we design new scalable algorithms for generation of explicit graph feature maps using sketching techniques. We obtain precise bounds for the approximation accuracy and computational complexity of the proposed approaches and demonstrate their applicability on real datasets. In particular, our experiments demonstrate that neighborhood ordering results in more informative features. For the special case of general graphs, i.e. graphs without ordered neighborhoods, the new graph kernels yield efficient and simple algorithms for the comparison of label distributions between graphs.

          Related collections

          Most cited references 8

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Community detection in graphs

          The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, playing a similar role like, e. g., the tissues or the organs in the human body. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems are often represented as graphs. This problem is very hard and not yet satisfactorily solved, despite the huge effort of a large interdisciplinary community of scientists working on it over the past few years. We will attempt a thorough exposition of the topic, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            BRENDA, the enzyme database: updates and major new developments.

             I Schomburg (2004)
            BRENDA (BRaunschweig ENzyme DAtabase) represents a comprehensive collection of enzyme and metabolic information, based on primary literature. The database contains data from at least 83,000 different enzymes from 9800 different organisms, classified in approximately 4200 EC numbers. BRENDA includes biochemical and molecular information on classification and nomenclature, reaction and specificity, functional parameters, occurrence, enzyme structure, application, engineering, stability, disease, isolation and preparation, links and literature references. The data are extracted and evaluated from approximately 46,000 references, which are linked to PubMed as long as the reference is cited in PubMed. In the past year BRENDA has undergone major changes including a large increase in updating speed with >50% of all data updated in 2002 or in the first half of 2003, the development of a new EC-tree browser, a taxonomy-tree browser, a chemical substructure search engine for ligand structure, the development of controlled vocabulary, an ontology for some information fields and a thesaurus for ligand names. The database is accessible free of charge to the academic community at http://www.brenda. uni-koeln.de.
              Bookmark
              • Record: found
              • Abstract: not found
              • Conference Proceedings: not found

              Training linear SVMs in linear time

                Bookmark

                Author and article information

                Journal
                25 May 2018
                Article
                1805.10014

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                Custom metadata
                cs.LG stat.ML

                Machine learning, Artificial intelligence

                Comments

                Comment on this article