• Record: found
  • Abstract: found
  • Article: found
Is Open Access

Generation of Triple-Transgenic Forsythia Cell Cultures as a Platform for the Efficient, Stable, and Sustainable Production of Lignans

Read this article at

      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


      Sesamin is a furofuran lignan biosynthesized from the precursor lignan pinoresinol specifically in sesame seeds. This lignan is shown to exhibit anti-hypertensive activity, protect the liver from damages by ethanol and lipid oxidation, and reduce lung tumor growth. Despite rapidly elevating demand, plant sources of lignans are frequently limited because of the high cost of locating and collecting plants. Indeed, the acquisition of sesamin exclusively depends on the conventional extraction of particular Sesamum seeds. In this study, we have created the efficient, stable and sustainable sesamin production system using triple-transgenic Forsythia koreana cell suspension cultures, U18i-CPi-Fk. These transgenic cell cultures were generated by stably introducing an RNAi sequence against the pinoresinol-glucosylating enzyme, UGT71A18, into existing CPi-Fk cells, which had been created by introducing Sesamum indicum sesamin synthase (CYP81Q1) and an RNA interference (RNAi) sequence against pinoresinol/lariciresinol reductase (PLR) into F. koreanna cells. Compared to its transgenic prototype, U18i-CPi-Fk displayed 5-fold higher production of pinoresinol aglycone and 1.4-fold higher production of sesamin, respectively, while the wildtype cannot produce sesamin due to a lack of any intrinsic sesamin synthase. Moreover, red LED irradiation of U18i-CPi-Fk specifically resulted in 3.0-fold greater production in both pinoresinol aglycone and sesamin than production of these lignans under the dark condition, whereas pinoresinol production was decreased in the wildtype under red LED. Moreover, we developed a procedure for sodium alginate-based long-term storage of U18i-CPi-Fk in liquid nitrogen. Production of sesamin in U18i-CPi-Fk re-thawed after six-month cryopreservation was equivalent to that of non-cryopreserved U18i-CPi-Fk. These data warrant on-demand production of sesamin anytime and anywhere. Collectively, the present study provides evidence that U18i-CP-Fk is an unprecedented platform for efficient, stable, and sustainable production of sesamin, and shows that a transgenic and specific light-regulated Forsythia cell-based metabolic engineering is a promising strategy for the acquisition of rare and beneficial lignans.

      Related collections

      Most cited references 52

      • Record: found
      • Abstract: found
      • Article: not found

      Production of the antimalarial drug precursor artemisinic acid in engineered yeast.

      Malaria is a global health problem that threatens 300-500 million people and kills more than one million people annually. Disease control is hampered by the occurrence of multi-drug-resistant strains of the malaria parasite Plasmodium falciparum. Synthetic antimalarial drugs and malarial vaccines are currently being developed, but their efficacy against malaria awaits rigorous clinical testing. Artemisinin, a sesquiterpene lactone endoperoxide extracted from Artemisia annua L (family Asteraceae; commonly known as sweet wormwood), is highly effective against multi-drug-resistant Plasmodium spp., but is in short supply and unaffordable to most malaria sufferers. Although total synthesis of artemisinin is difficult and costly, the semi-synthesis of artemisinin or any derivative from microbially sourced artemisinic acid, its immediate precursor, could be a cost-effective, environmentally friendly, high-quality and reliable source of artemisinin. Here we report the engineering of Saccharomyces cerevisiae to produce high titres (up to 100 mg l(-1)) of artemisinic acid using an engineered mevalonate pathway, amorphadiene synthase, and a novel cytochrome P450 monooxygenase (CYP71AV1) from A. annua that performs a three-step oxidation of amorpha-4,11-diene to artemisinic acid. The synthesized artemisinic acid is transported out and retained on the outside of the engineered yeast, meaning that a simple and inexpensive purification process can be used to obtain the desired product. Although the engineered yeast is already capable of producing artemisinic acid at a significantly higher specific productivity than A. annua, yield optimization and industrial scale-up will be required to raise artemisinic acid production to a level high enough to reduce artemisinin combination therapies to significantly below their current prices.
        • Record: found
        • Abstract: found
        • Article: not found

        High-level semi-synthetic production of the potent antimalarial artemisinin.

        In 2010 there were more than 200 million cases of malaria, and at least 655,000 deaths. The World Health Organization has recommended artemisinin-based combination therapies (ACTs) for the treatment of uncomplicated malaria caused by the parasite Plasmodium falciparum. Artemisinin is a sesquiterpene endoperoxide with potent antimalarial properties, produced by the plant Artemisia annua. However, the supply of plant-derived artemisinin is unstable, resulting in shortages and price fluctuations, complicating production planning by ACT manufacturers. A stable source of affordable artemisinin is required. Here we use synthetic biology to develop strains of Saccharomyces cerevisiae (baker's yeast) for high-yielding biological production of artemisinic acid, a precursor of artemisinin. Previous attempts to produce commercially relevant concentrations of artemisinic acid were unsuccessful, allowing production of only 1.6 grams per litre of artemisinic acid. Here we demonstrate the complete biosynthetic pathway, including the discovery of a plant dehydrogenase and a second cytochrome that provide an efficient biosynthetic route to artemisinic acid, with fermentation titres of 25 grams per litre of artemisinic acid. Furthermore, we have developed a practical, efficient and scalable chemical process for the conversion of artemisinic acid to artemisinin using a chemical source of singlet oxygen, thus avoiding the need for specialized photochemical equipment. The strains and processes described here form the basis of a viable industrial process for the production of semi-synthetic artemisinin to stabilize the supply of artemisinin for derivatization into active pharmaceutical ingredients (for example, artesunate) for incorporation into ACTs. Because all intellectual property rights have been provided free of charge, this technology has the potential to increase provision of first-line antimalarial treatments to the developing world at a reduced average annual price.
          • Record: found
          • Abstract: found
          • Article: not found

          Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids.

          Plant compounds that are perceived by humans to have color are generally referred to as 'pigments'. Their varied structures and colors have long fascinated chemists and biologists, who have examined their chemical and physical properties, their mode of synthesis, and their physiological and ecological roles. Plant pigments also have a long history of use by humans. The major classes of plant pigments, with the exception of the chlorophylls, are reviewed here. Anthocyanins, a class of flavonoids derived ultimately from phenylalanine, are water-soluble, synthesized in the cytosol, and localized in vacuoles. They provide a wide range of colors ranging from orange/red to violet/blue. In addition to various modifications to their structures, their specific color also depends on co-pigments, metal ions and pH. They are widely distributed in the plant kingdom. The lipid-soluble, yellow-to-red carotenoids, a subclass of terpenoids, are also distributed ubiquitously in plants. They are synthesized in chloroplasts and are essential to the integrity of the photosynthetic apparatus. Betalains, also conferring yellow-to-red colors, are nitrogen-containing water-soluble compounds derived from tyrosine that are found only in a limited number of plant lineages. In contrast to anthocyanins and carotenoids, the biosynthetic pathway of betalains is only partially understood. All three classes of pigments act as visible signals to attract insects, birds and animals for pollination and seed dispersal. They also protect plants from damage caused by UV and visible light.

            Author and article information

            Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto 619–0284, Japan
            University of Illinois at Urbana-Champaign, UNITED STATES
            Author notes

            Competing Interests: The authors have declared that no competing interests exist.

            Conceived and designed the experiments: JM HS. Performed the experiments: JM EM KM TK HS. Analyzed the data: JM EM KM TK HS. Contributed reagents/materials/analysis tools: JM EM KM TK HS. Wrote the paper: JM EM KM TK HS.

            Role: Editor
            PLoS One
            PLoS ONE
            PLoS ONE
            Public Library of Science (San Francisco, CA USA )
            7 December 2015
            : 10
            : 12
            26641084 4671638 10.1371/journal.pone.0144519 PONE-D-15-40469
            © 2015 Murata et al

            This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

            Figures: 7, Tables: 0, Pages: 16
            This work is supported by the Plant Factory project of the Ministry of Economy, Trade and Industry, Japan. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
            Research Article
            Custom metadata
            All relevant data are within the paper.



            Comment on this article