27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transplantation of mouse embryonic stem cell-derived oligodendrocytes in the murine model of globoid cell leukodystrophy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Globoid cell leukodystrophy (GLD) is a severe disorder of the central and peripheral nervous system caused by the absence of galactocerebrosidase (GALC) activity. Cell-based therapies are highly promising strategies for GLD. In this study, G-Olig2 mouse embryonic stem cells (ESCs) were induced into oligodendrocyte progenitor cells (OPCs) and were implanted into the brains of twitcher mice, an animal model of GLD, to explore the therapeutic potential of the cells.

          Methods

          The G-Olig2 ESCs were induced into OPCs by using cytokines and a multi-step differentiation procedure. Oligodendrocyte markers were detected by reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemistry. The toxicity of psychosine to OPCs was determined by a cell proliferation assay kit. The GALC level of OPCs was also examined. OPCs were labeled with Dir and transplanted into the brains of twitcher mice. The transplanted cells were detected by in-Vivo Multispectral Imaging System and real-time PCR. The physiological effects of twitcher mice were assessed.

          Results

          Oligodendrocyte markers were expressed in OPCs, and 76% ± 5.76% of the OPCs were enhanced green fluorescent protein (eGFP)-positive, eGFP was driven by the Olig2 promoter. The effect of psychosine on cell viability indicated that OPCs were more resistant to psychosine toxicity. The GALC level of OPCs was 10.0 ± 1.23 nmol/hour per mg protein, which was significantly higher than other cells. Dir-labeled OPCs were injected into the forebrain of post-natal day 10 twitcher mice. The transplanted OPCs were myelin basic protein (MBP)-positive and remained along the injection tract as observed by fluorescent microscopy. The level of the Dir fluorescent signal and eGFP mRNA significantly decreased at days 10 and 20 after injection, as indicated by in-Vivo Multispectral Imaging System and real-time PCR. Because of poor cell survival and limited migration ability, there was no significant improvement in brain GALC activity, MBP level, life span, body weight, and behavioral deficits of twitcher mice.

          Conclusions

          ESC-derived OPC transplantation was not sufficient to reverse the clinical course of GLD in twitcher mice.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells.

          G Martin (1981)
          This report describes the establishment directly from normal preimplantation mouse embryos of a cell line that forms teratocarcinomas when injected into mice. The pluripotency of these embryonic stem cells was demonstrated conclusively by the observation that subclonal cultures, derived from isolated single cells, can differentiate into a wide variety of cell types. Such embryonic stem cells were isolated from inner cell masses of late blastocysts cultured in medium conditioned by an established teratocarcinoma stem cell line. This suggests that such conditioned medium might contain a growth factor that stimulates the proliferation or inhibits the differentiation of normal pluripotent embryonic cells, or both. This method of obtaining embryonic stem cells makes feasible the isolation of pluripotent cells lines from various types of noninbred embryo, including those carrying mutant genes. The availability of such cell lines should made possible new approaches to the study of early mammalian development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells.

            Human pluripotent stem cells are a powerful tool for modeling brain development and disease. The human cortex is composed of two major neuronal populations: projection neurons and local interneurons. Cortical interneurons comprise a diverse class of cell types expressing the neurotransmitter GABA. Dysfunction of cortical interneurons has been implicated in neuropsychiatric diseases, including schizophrenia, autism, and epilepsy. Here, we demonstrate the highly efficient derivation of human cortical interneurons in an NKX2.1::GFP human embryonic stem cell reporter line. Manipulating the timing of SHH activation yields three distinct GFP+ populations with specific transcriptional profiles, neurotransmitter phenotypes, and migratory behaviors. Further differentiation in a murine cortical environment yields parvalbumin- and somatostatin-expressing neurons that exhibit synaptic inputs and electrophysiological properties of cortical interneurons. Our study defines the signals sufficient for modeling human ventral forebrain development in vitro and lays the foundation for studying cortical interneuron involvement in human disease pathology. Copyright © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Maturation of Human Embryonic Stem Cell–Derived Pancreatic Progenitors Into Functional Islets Capable of Treating Pre-existing Diabetes in Mice

              Diabetes is a chronic debilitating disease that results from insufficient production of insulin from pancreatic β-cells. Islet cell replacement can effectively treat diabetes but is currently severely limited by the reliance upon cadaveric donor tissue. We have developed a protocol to efficiently differentiate commercially available human embryonic stem cells (hESCs) in vitro into a highly enriched PDX1+ pancreatic progenitor cell population that further develops in vivo to mature pancreatic endocrine cells. Immature pancreatic precursor cells were transplanted into immunodeficient mice with streptozotocin-induced diabetes, and glycemia was initially controlled with exogenous insulin. As graft-derived insulin levels increased over time, diabetic mice were weaned from exogenous insulin and human C-peptide secretion was eventually regulated by meal and glucose challenges. Similar differentiation of pancreatic precursor cells was observed after transplant in immunodeficient rats. Throughout the in vivo maturation period hESC-derived endocrine cells exhibited gene and protein expression profiles that were remarkably similar to the developing human fetal pancreas. Our findings support the feasibility of using differentiated hESCs as an alternative to cadaveric islets for treating patients with diabetes.
                Bookmark

                Author and article information

                Contributors
                kxl720724@yahoo.com
                nirz@163.com
                zhou.guoxiong@aliyun.com
                mzb63@163.com
                Zhangjf05090@163.com
                jsntyi@163.com
                joezyz@hotmail.com
                shaonanma@163.com
                niwenkai@sina.com
                alexxs@139.com
                Journal
                Stem Cell Res Ther
                Stem Cell Res Ther
                Stem Cell Research & Therapy
                BioMed Central (London )
                1757-6512
                14 March 2015
                14 March 2015
                2015
                : 6
                : 1
                : 30
                Affiliations
                [ ]Department of Gastroenterology, Nantong University Affiliated Hospital, 20 Xi Si Road, Nantong, Jiangsu 226001 China
                [ ]Department of General Surgery, Nantong University Affiliated Hospital, 20 Xi Si Road, Nantong, Jiangsu 226001 China
                Article
                24
                10.1186/s13287-015-0024-2
                4413525
                25888852
                aa674184-0233-4106-a349-d109194996eb
                © Kuai et al.; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 17 November 2014
                : 26 February 2015
                : 26 February 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article