57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Functional polarization of tumour-associated macrophages by tumour-derived lactic acid

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Macrophages have an important role in the maintenance of tissue homeostasis. To perform this function, macrophages must have the capacity to monitor the functional states of their 'client cells': namely, the parenchymal cells in the various tissues in which macrophages reside. Tumours exhibit many features of abnormally developed organs, including tissue architecture and cellular composition. Similarly to macrophages in normal tissues and organs, macrophages in tumours (tumour-associated macrophages) perform some key homeostatic functions that allow tumour maintenance and growth. However, the signals involved in communication between tumours and macrophages are poorly defined. Here we show that lactic acid produced by tumour cells, as a by-product of aerobic or anaerobic glycolysis, has a critical function in signalling, through inducing the expression of vascular endothelial growth factor and the M2-like polarization of tumour-associated macrophages. Furthermore, we demonstrate that this effect of lactic acid is mediated by hypoxia-inducible factor 1α (HIF1α). Finally, we show that the lactate-induced expression of arginase 1 by macrophages has an important role in tumour growth. Collectively, these findings identify a mechanism of communication between macrophages and their client cells, including tumour cells. This communication most probably evolved to promote homeostasis in normal tissues but can also be engaged in tumours to promote their growth.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          Macrophages: master regulators of inflammation and fibrosis.

          Macrophages are found in close proximity with collagen-producing myofibroblasts and indisputably play a key role in fibrosis. They produce profibrotic mediators that directly activate fibroblasts, including transforming growth factor-beta1 and platelet-derived growth factor, and control extracellular matrix turnover by regulating the balance of various matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases. Macrophages also regulate fibrogenesis by secreting chemokines that recruit fibroblasts and other inflammatory cells. With their potential to act in both a pro- and antifibrotic capacity, as well as their ability to regulate the activation of resident and recruited myofibroblasts, macrophages and the factors they express are integrated into all stages of the fibrotic process. These various, and sometimes opposing, functions may be performed by distinct macrophage subpopulations, the identification of which is a growing focus of fibrosis research. Although collagen-secreting myofibroblasts once were thought of as the master "producers" of fibrosis, this review will illustrate how macrophages function as the master "regulators" of fibrosis. Copyright Thieme Medical Publishers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis.

            Metastatic progression depends on genetic alterations intrinsic to cancer cells as well as the inflammatory microenvironment of advanced tumours. To understand how cancer cells affect the inflammatory microenvironment, we conducted a biochemical screen for macrophage-activating factors secreted by metastatic carcinomas. Here we show that, among the cell lines screened, Lewis lung carcinoma (LLC) were the most potent macrophage activators leading to production of interleukin-6 (IL-6) and tumour-necrosis factor-alpha (TNF-alpha) through activation of the Toll-like receptor (TLR) family members TLR2 and TLR6. Both TNF-alpha and TLR2 were found to be required for LLC metastasis. Biochemical purification of LLC-conditioned medium (LCM) led to identification of the extracellular matrix proteoglycan versican, which is upregulated in many human tumours including lung cancer, as a macrophage activator that acts through TLR2 and its co-receptors TLR6 and CD14. By activating TLR2:TLR6 complexes and inducing TNF-alpha secretion by myeloid cells, versican strongly enhances LLC metastatic growth. These results explain how advanced cancer cells usurp components of the host innate immune system, including bone-marrow-derived myeloid progenitors, to generate an inflammatory microenvironment hospitable for metastatic growth.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Macrophages regulate the angiogenic switch in a mouse model of breast cancer.

              The development of a tumor vasculature or access to the host vasculature is a crucial step for the survival and metastasis of malignant tumors. Although therapeutic strategies attempting to inhibit this step during tumor development are being developed, the biological regulation of this process is still largely unknown. Using a transgenic mouse susceptible to mammary cancer, PyMT mice, we have characterized the development of the vasculature in mammary tumors during their progression to malignancy. We show that the onset of the angiogenic switch, identified as the formation of a high-density vessel network, is closely associated with the transition to malignancy. More importantly, both the angiogenic switch and the progression to malignancy are regulated by infiltrated macrophages in the primary mammary tumors. Inhibition of the macrophage infiltration into the tumor delayed the angiogenic switch and malignant transition whereas genetic restoration of the macrophage population specifically in these tumors rescued the vessel phenotype. Furthermore, premature induction of macrophage infiltration into premalignant lesions promoted an early onset of the angiogenic switch independent of tumor progression. Taken together, this study shows that tumor-associated macrophages play a key role in promoting tumor angiogenesis, an essential step in the tumor progression to malignancy.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                September 2014
                July 13 2014
                September 2014
                : 513
                : 7519
                : 559-563
                Article
                10.1038/nature13490
                4301845
                25043024
                aa768723-d321-4446-ba27-7db800fb4e7f
                © 2014

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article