4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Expression of LamB Vaccine Antigen in Wolffia globosa (Duck Weed) Against Fish Vibriosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vibriosis is a commonly found bacterial disease identified among fish and shellfish cultured in saline waters. A multitude of Vibrio species have been identified as the causative agents. LamB, a member of outer membrane protein (OMPs) family of these bacteria is conserved among all Vibrio species and has been identified as an efficient vaccine candidate against vibriosis. Rootless duckweed ( Wolffia) is a tiny, edible aquatic plant possessing characteristics suitable for the utilization as a bioreactor. Thus, we attempted to express a protective edible vaccine antigen against fish vibriosis in nuclear-transformed Wolffia. We amplified LamB gene from virulent Vibrio alginolyticus and it was modified to maximize the protein expression level and translocate the protein to the endoplasmic reticulum (ER) in plants. It was cloned into binary vector pMYC under the control of CaMV 35S promoter and introduced into Wolffia globosa by Agrobacterium-mediated transformation. Integration and expression of the LamB gene was confirmed by genomic PCR and RT-PCR. Western blot analysis revealed accumulation of the LamB protein in 8 transgenic lines. The cross-protective property of transgenic Wolffia was evaluated by orally vaccinating zebrafish through feeding fresh transgenic Wolffia and subsequently challenging with virulent V. alginolyticus. High relative percent survival (RPS) of the vaccinated fish (63.3%) confirmed that fish immunized with transgenic Wolffia were well-protected from Vibrio infection. These findings suggest that Wolffia expressed LamB could serve as an edible plant-based candidate vaccine model for fish vibriosis and feasibility of utilizing Wolffia as bioreactor to produce edible vaccines.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension.

          Gene splicing by overlap extension is a new approach for recombining DNA molecules at precise junctions irrespective of nucleotide sequences at the recombination site and without the use of restriction endonucleases or ligase. Fragments from the genes that are to be recombined are generated in separate polymerase chain reactions (PCRs). The primers are designed so that the ends of the products contain complementary sequences. When these PCR products are mixed, denatured, and reannealed, the strands having the matching sequences at their 3' ends overlap and act as primers for each other. Extension of this overlap by DNA polymerase produces a molecule in which the original sequences are 'spliced' together. This technique is used to construct a gene encoding a mosaic fusion protein comprised of parts of two different class-I major histocompatibility genes. This simple and widely applicable approach has significant advantages over standard recombinant DNA techniques.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oral immunization with a recombinant bacterial antigen produced in transgenic plants.

            The binding subunit of Escherichia coli heat-labile enterotoxin (LT-B) is a highly active oral immunogen. Transgenic tobacco and potato plants were made with the use of genes encoding LT-B or an LT-B fusion protein with a microsomal retention sequence. The plants expressed the foreign peptides, both of which formed oligomers that bound the natural ligand. Mice immunized by gavage produced serum and gut mucosal anti-LT-B immunoglobulins that neutralized the enterotoxin in cell protection assays. Feeding mice fresh transgenic potato tubers also caused oral immunization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plant-based vaccine: mice immunized with chloroplast-derived anthrax protective antigen survive anthrax lethal toxin challenge.

              The currently available human vaccine for anthrax, derived from the culture supernatant of Bacillus anthracis, contains the protective antigen (PA) and traces of the lethal and edema factors, which may contribute to adverse side effects associated with this vaccine. Therefore, an effective expression system that can provide a clean, safe, and efficacious vaccine is required. In an effort to produce anthrax vaccine in large quantities and free of extraneous bacterial contaminants, PA was expressed in transgenic tobacco chloroplasts by inserting the pagA gene into the chloroplast genome. Chloroplast integration of the pagA gene was confirmed by PCR and Southern analysis. Mature leaves grown under continuous illumination contained PA as up to 14.2% of the total soluble protein. Cytotoxicity measurements in macrophage lysis assays showed that chloroplast-derived PA was equal in potency to PA produced in B. anthracis. Subcutaneous immunization of mice with partially purified chloroplast-derived or B. anthracis-derived PA with adjuvant yielded immunoglobulin G titers up to 1:320,000, and both groups of mice survived (100%) challenge with lethal doses of toxin. An average yield of about 150 mg of PA per plant should produce 360 million doses of a purified vaccine free of bacterial toxins edema factor and lethal factor from 1 acre of land. Such high expression levels without using fermenters and the immunoprotection offered by the chloroplast-derived PA should facilitate development of a cleaner and safer anthrax vaccine at a lower production cost. These results demonstrate the immunogenic and immunoprotective properties of plant-derived anthrax vaccine antigen.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                20 August 2020
                2020
                : 11
                : 1857
                Affiliations
                [1] 1University of Chinese Academy of Sciences , Beijing, China
                [2] 2The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan, China
                [3] 3Inland Aquatic Resources and Aquaculture Division (IARAD), National Aquatic Resources Research and Development Agency (NARA) , Colombo, Sri Lanka
                Author notes

                Edited by: Wei-Dan Jiang, Sichuan Agricultural University, China

                Reviewed by: Qihui Yang, Guangdong Ocean University, China; Yishan Lu, Guangdong Ocean University, China

                *Correspondence: Hongwei Hou houhw@ 123456ihb.ac.cn

                This article was submitted to Comparative Immunology, a section of the journal Frontiers in Immunology

                †These authors have contributed equally to this work

                Article
                10.3389/fimmu.2020.01857
                7468452
                32973766
                aa80261f-142b-4e0f-b0b4-b153efd1faf2
                Copyright © 2020 Heenatigala, Sun, Yang, Zhao and Hou.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 April 2020
                : 10 July 2020
                Page count
                Figures: 4, Tables: 2, Equations: 0, References: 45, Pages: 9, Words: 6953
                Categories
                Immunology
                Original Research

                Immunology
                vibriosis,wolffia globosa,lamb,edible vaccine,recombinant protein,oral immunization
                Immunology
                vibriosis, wolffia globosa, lamb, edible vaccine, recombinant protein, oral immunization

                Comments

                Comment on this article