28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Diversity in Fish Auditory Systems: One of the Riddles of Sensory Biology

      ,
      Frontiers in Ecology and Evolution
      Frontiers Media SA

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references156

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Tree of Life and a New Classification of Bony Fishes

          The tree of life of fishes is in a state of flux because we still lack a comprehensive phylogeny that includes all major groups. The situation is most critical for a large clade of spiny-finned fishes, traditionally referred to as percomorphs, whose uncertain relationships have plagued ichthyologists for over a century. Most of what we know about the higher-level relationships among fish lineages has been based on morphology, but rapid influx of molecular studies is changing many established systematic concepts. We report a comprehensive molecular phylogeny for bony fishes that includes representatives of all major lineages. DNA sequence data for 21 molecular markers (one mitochondrial and 20 nuclear genes) were collected for 1410 bony fish taxa, plus four tetrapod species and two chondrichthyan outgroups (total 1416 terminals). Bony fish diversity is represented by 1093 genera, 369 families, and all traditionally recognized orders. The maximum likelihood tree provides unprecedented resolution and high bootstrap support for most backbone nodes, defining for the first time a global phylogeny of fishes. The general structure of the tree is in agreement with expectations from previous morphological and molecular studies, but significant new clades arise. Most interestingly, the high degree of uncertainty among percomorphs is now resolved into nine well-supported supraordinal groups. The order Perciformes, considered by many a polyphyletic taxonomic waste basket, is defined for the first time as a monophyletic group in the global phylogeny. A new classification that reflects our phylogenetic hypothesis is proposed to facilitate communication about the newly found structure of the tree of life of fishes. Finally, the molecular phylogeny is calibrated using 60 fossil constraints to produce a comprehensive time tree. The new time-calibrated phylogeny will provide the basis for and stimulate new comparative studies to better understand the evolution of the amazing diversity of fishes.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Fish Otoliths: Daily Growth Layers and Periodical Patterns

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rethinking sound detection by fishes.

              In this paper we reconsider the designation of fishes as being either "hearing specialists" or "hearing generalists," and recommend dropping the terms. We argue that this classification is only vaguely and variously defined in the literature, and that these terms often have unclear and different meaning to different investigators. Furthermore, we make the argument that the ancestral, and most common, mode of hearing in fishes involves sensitivity to acoustic particle motion via direct inertial stimulation of the otolith organ(s). Moreover, any possible pressure sensitivity is the result of the presence of an air bubble (e.g., the swim bladder), and that hearing sensitivity may be enhanced by the fish having a specific connection between the inner ear to a bubble of air. There are data showing that some fish species have a sensitivity to both pressure and motion that is frequency dependent. Thus such species could not possibly be termed as either hearing "generalists" or specialists," and many more species probably could be classified in this way as well. Furthermore, we propose that the term "specialization" be reserved for cases in which a species has some kind of morphological connection or close continuity between the inner ear and an air bubble that affects behavioral sensitivity to sound pressure (i.e., an otophysic connection). Copyright © 2009 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Frontiers in Ecology and Evolution
                Front. Ecol. Evol.
                Frontiers Media SA
                2296-701X
                March 31 2016
                March 31 2016
                : 4
                :
                Article
                10.3389/fevo.2016.00028
                aaae420c-36c4-497b-afc7-bf6b75c8c522
                © 2016
                History

                Comments

                Comment on this article