67
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gonadotropin-releasing hormone 2 suppresses food intake in the zebrafish, Danio rerio

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gonadotropin-releasing hormone (GnRH) is an evolutionarily conserved neuropeptide with 10 amino acid residues, of which several structural variants exist. A molecular form known as GnRH2 ([His 5 Trp 7 Tyr 8]GnRH, also known as chicken GnRH II) is widely distributed in vertebrates except for rodents, and has recently been implicated in the regulation of feeding behavior in goldfish. However, the influence of GnRH2 on feeding behavior in other fish has not yet been studied. In the present study, therefore, we investigated the role of GnRH2 in the regulation of feeding behavior in a zebrafish model, and examined its involvement in food intake after intracerebroventricular (ICV) administration. ICV injection of GnRH2 at 0.1 and 1 pmol/g body weight (BW) induced a marked decrease of food consumption in a dose-dependent manner during 30 min after feeding. Cumulative food intake was significantly decreased by ICV injection of GnRH2 at 1 pmol/g BW during the 30-min post-treatment observation period. The anorexigenic action of GnRH2 was completely blocked by treatment with the GnRH type I receptor antagonist Antide at 25 pmol/g BW. We also examined the effect of feeding condition on the expression level of the GnRH2 transcript in the hypothalamus. Levels of GnRH2 mRNA obtained from fish that had been provided excess food for 7 days were higher than those in fish that had been fed normally. These results suggest that, in zebrafish, GnRH2 acts as an anorexigenic factor, as is the case in goldfish.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Gonadotropin-releasing hormone receptors.

          GnRH and its analogs are used extensively for the treatment of hormone-dependent diseases and assisted reproductive techniques. They also have potential as novel contraceptives in men and women. A thorough delineation of the molecular mechanisms involved in ligand binding, receptor activation, and intracellular signal transduction is kernel to understanding disease processes and the development of specific interventions. Twenty-three structural variants of GnRH have been identified in protochordates and vertebrates. In many vertebrates, three GnRHs and three cognate receptors have been identified with distinct distributions and functions. In man, the hypothalamic GnRH regulates gonadotropin secretion through the pituitary GnRH type I receptor via activation of G(q). In-depth studies have identified amino acid residues in both the ligand and receptor involved in binding, receptor activation, and translation into intracellular signal transduction. Although the predominant coupling of the type I GnRH receptor in the gonadotrope is through productive G(q) stimulation, signal transduction can occur via other G proteins and potentially by G protein-independent means. The eventual selection of intracellular signaling may be specifically directed by variations in ligand structure. A second form of GnRH, GnRH II, conserved in all higher vertebrates, including man, is present in extrahypothalamic brain and many reproductive tissues. Its cognate receptor has been cloned from various vertebrate species, including New and Old World primates. The human gene homolog of this receptor, however, has a frame-shift and stop codon, and it appears that GnRH II signaling occurs through the type I GnRH receptor. There has been considerable plasticity in the use of different GnRHs, receptors, and signaling pathways for diverse functions. Delineation of the structural elements in GnRH and the receptor, which facilitate differential signaling, will contribute to the development of novel interventive GnRH analogs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            GnRHs and GnRH receptors.

            GnRH is the pivotal hypothalamic hormone regulating reproduction. Over 20 forms of the decapeptide have been identified in which the NH2- and COOH-terminal sequences, which are essential for receptor binding and activation, are conserved. In mammals, there are two forms, GnRH I which regulates gonadotropin and GnRH II which appears to be a neuromodulator and stimulates sexual behaviour. GnRHs also occur in reproductive tissues and tumours in which a paracrine/autocrine role is postulated. GnRH agonists and antagonists are now extensively used to treat hormone-dependent diseases, in assisted conception and have promise as novel contraceptives. Non-peptide orally-active GnRH antagonists have been recently developed and may increase the flexibility and range of utility. As with GnRH, GnRH receptors have undergone co-ordinated gene duplications such that cognate receptor subtypes for respective ligands exist in most vertebrates. Interestingly, in man and some other mammals (e.g. chimp, sheep and bovine) the Type II GnRH receptor has been silenced. However, GnRH I and GnRH II still appear to have distinct roles in signalling differentially through the Type I receptor (ligand-selective-signalling) to have different downstream effects. The ligand-receptor interactions and receptor conformational changes involved in receptor activation have been partly delineated. Together, these findings are setting the scene for generating novel selective GnRH analogues with potential for wider and more specific application.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evolution of GnRH: diving deeper.

              Gonadotropin-releasing hormone (GnRH) plays a central role in vertebrate reproduction. The evolutionary origin of this neuropeptide and its receptor is not obvious, but the advent of genomics makes it possible to examine the roots of GnRH and delve deeper into its ancestral relationships. New peptide sequences identified in invertebrates from annelids to tunicates reveal GnRH-like peptides of 10-12 amino acids. Structural conservation suggests homology between the 15 known invertebrate peptides and the 15 known vertebrate GnRHs. The functions of the invertebrate GnRH-like peptides are not necessarily related to reproduction. We suggest that structurally related families of invertebrate peptides including corazonin and adipokinetic hormone (AKH) form a superfamily of neuropeptides with the GnRH family. GnRH receptors have also been identified in invertebrates from annelids to tunicates suggesting that the origin of GnRH and its receptor extends deep in evolution to the origin of bilaterian animals. To resolve the relationship of invertebrate and vertebrate receptors, we conducted large-scale phylogenetic analysis using maximum likelihood. The data support a superfamily that includes GnRH, AKH and corazonin receptors derived from both published sequences and unpublished gene model predictions. Closely related to the GnRHR superfamily is the vasopressin/oxytocin superfamily of receptors. Phylogenetic analysis suggests a shared ancestry with deep roots. A functional role for GnRH in vertebrates or invertebrates leads to questions about the evolutionary origin of the pituitary. Our analysis suggests a functioning pituitary was the result of genomic duplications in early vertebrates. Copyright © 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrin.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                17 October 2012
                2012
                : 3
                : 122
                Affiliations
                [1] 1Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama Toyama, Japan
                [2] 2Laboratory of Regulatory Biology, Graduate School of Innovative Life Science, University of Toyama Toyama, Japan
                Author notes

                Edited by: Hubert Vaudry, University of Rouen, France

                Reviewed by: Jack Falcon, Université Pierre et Marie Curie and Centre National de la Recherche Scientifique, France; John Chang, University of Alberta, Canada

                *Correspondence: Kouhei Matsuda, Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan. e-mail: kmatsuda@ 123456sci.u-toyama.ac.jp

                This article was submitted to Frontiers in Neuroendocrine Science, a specialty of Frontiers in Endocrinology.

                Article
                10.3389/fendo.2012.00122
                3473230
                23087673
                aab3d9e7-df36-438b-8868-14b035d17270
                Copyright © Nishiguchi, Azuma, Yokobori, Uchiyama and Matsuda.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 31 August 2012
                : 30 September 2012
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 50, Pages: 6, Words: 0
                Categories
                Endocrinology
                Original Research Article

                Endocrinology & Diabetes
                food intake,gnrh2,antide,icv administration,zebrafish,anorexigenic action
                Endocrinology & Diabetes
                food intake, gnrh2, antide, icv administration, zebrafish, anorexigenic action

                Comments

                Comment on this article